ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efaddlem GIF version

Theorem efaddlem 11839
Description: Lemma for efadd 11840 (exponential function addition law). (Contributed by Mario Carneiro, 29-Apr-2014.)
Hypotheses
Ref Expression
efadd.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
efadd.2 𝐺 = (𝑛 ∈ ℕ0 ↦ ((𝐵𝑛) / (!‘𝑛)))
efadd.3 𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝐴 + 𝐵)↑𝑛) / (!‘𝑛)))
efadd.4 (𝜑𝐴 ∈ ℂ)
efadd.5 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
efaddlem (𝜑 → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵)))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝐹(𝑛)   𝐺(𝑛)   𝐻(𝑛)

Proof of Theorem efaddlem
Dummy variables 𝑗 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efadd.4 . . . 4 (𝜑𝐴 ∈ ℂ)
2 efadd.5 . . . 4 (𝜑𝐵 ∈ ℂ)
31, 2addcld 8046 . . 3 (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
4 efadd.3 . . . 4 𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝐴 + 𝐵)↑𝑛) / (!‘𝑛)))
54efcvg 11831 . . 3 ((𝐴 + 𝐵) ∈ ℂ → seq0( + , 𝐻) ⇝ (exp‘(𝐴 + 𝐵)))
63, 5syl 14 . 2 (𝜑 → seq0( + , 𝐻) ⇝ (exp‘(𝐴 + 𝐵)))
7 efadd.1 . . . . . 6 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
87eftvalcn 11822 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐹𝑗) = ((𝐴𝑗) / (!‘𝑗)))
91, 8sylan 283 . . . 4 ((𝜑𝑗 ∈ ℕ0) → (𝐹𝑗) = ((𝐴𝑗) / (!‘𝑗)))
10 absexp 11244 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (abs‘(𝐴𝑗)) = ((abs‘𝐴)↑𝑗))
111, 10sylan 283 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (abs‘(𝐴𝑗)) = ((abs‘𝐴)↑𝑗))
12 faccl 10827 . . . . . . . 8 (𝑗 ∈ ℕ0 → (!‘𝑗) ∈ ℕ)
1312adantl 277 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (!‘𝑗) ∈ ℕ)
14 nnre 8997 . . . . . . . 8 ((!‘𝑗) ∈ ℕ → (!‘𝑗) ∈ ℝ)
15 nnnn0 9256 . . . . . . . . 9 ((!‘𝑗) ∈ ℕ → (!‘𝑗) ∈ ℕ0)
1615nn0ge0d 9305 . . . . . . . 8 ((!‘𝑗) ∈ ℕ → 0 ≤ (!‘𝑗))
1714, 16absidd 11332 . . . . . . 7 ((!‘𝑗) ∈ ℕ → (abs‘(!‘𝑗)) = (!‘𝑗))
1813, 17syl 14 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (abs‘(!‘𝑗)) = (!‘𝑗))
1911, 18oveq12d 5940 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → ((abs‘(𝐴𝑗)) / (abs‘(!‘𝑗))) = (((abs‘𝐴)↑𝑗) / (!‘𝑗)))
20 expcl 10649 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐴𝑗) ∈ ℂ)
211, 20sylan 283 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (𝐴𝑗) ∈ ℂ)
2213nncnd 9004 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (!‘𝑗) ∈ ℂ)
2313nnap0d 9036 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (!‘𝑗) # 0)
2421, 22, 23absdivapd 11360 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (abs‘((𝐴𝑗) / (!‘𝑗))) = ((abs‘(𝐴𝑗)) / (abs‘(!‘𝑗))))
251abscld 11346 . . . . . . 7 (𝜑 → (abs‘𝐴) ∈ ℝ)
2625recnd 8055 . . . . . 6 (𝜑 → (abs‘𝐴) ∈ ℂ)
27 eqid 2196 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))
2827eftvalcn 11822 . . . . . 6 (((abs‘𝐴) ∈ ℂ ∧ 𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑗) = (((abs‘𝐴)↑𝑗) / (!‘𝑗)))
2926, 28sylan 283 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑗) = (((abs‘𝐴)↑𝑗) / (!‘𝑗)))
3019, 24, 293eqtr4rd 2240 . . . 4 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑗) = (abs‘((𝐴𝑗) / (!‘𝑗))))
31 eftcl 11819 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → ((𝐴𝑗) / (!‘𝑗)) ∈ ℂ)
321, 31sylan 283 . . . 4 ((𝜑𝑗 ∈ ℕ0) → ((𝐴𝑗) / (!‘𝑗)) ∈ ℂ)
33 efadd.2 . . . . . 6 𝐺 = (𝑛 ∈ ℕ0 ↦ ((𝐵𝑛) / (!‘𝑛)))
3433eftvalcn 11822 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) = ((𝐵𝑘) / (!‘𝑘)))
352, 34sylan 283 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = ((𝐵𝑘) / (!‘𝑘)))
36 eftcl 11819 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐵𝑘) / (!‘𝑘)) ∈ ℂ)
372, 36sylan 283 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((𝐵𝑘) / (!‘𝑘)) ∈ ℂ)
384eftvalcn 11822 . . . . . 6 (((𝐴 + 𝐵) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐻𝑘) = (((𝐴 + 𝐵)↑𝑘) / (!‘𝑘)))
393, 38sylan 283 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = (((𝐴 + 𝐵)↑𝑘) / (!‘𝑘)))
401adantr 276 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
412adantr 276 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
42 simpr 110 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
43 binom 11649 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))))
4440, 41, 42, 43syl3anc 1249 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))))
4544oveq1d 5937 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (((𝐴 + 𝐵)↑𝑘) / (!‘𝑘)) = (Σ𝑗 ∈ (0...𝑘)((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)))
46 0zd 9338 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 0 ∈ ℤ)
4742nn0zd 9446 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
4846, 47fzfigd 10523 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (0...𝑘) ∈ Fin)
49 faccl 10827 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
5049adantl 277 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ)
5150nncnd 9004 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℂ)
52 bccl2 10860 . . . . . . . . . . 11 (𝑗 ∈ (0...𝑘) → (𝑘C𝑗) ∈ ℕ)
5352adantl 277 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘C𝑗) ∈ ℕ)
5453nncnd 9004 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘C𝑗) ∈ ℂ)
551ad2antrr 488 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → 𝐴 ∈ ℂ)
56 fznn0sub 10132 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑘) → (𝑘𝑗) ∈ ℕ0)
5756adantl 277 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘𝑗) ∈ ℕ0)
5855, 57expcld 10765 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐴↑(𝑘𝑗)) ∈ ℂ)
592ad2antrr 488 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → 𝐵 ∈ ℂ)
60 elfznn0 10189 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑘) → 𝑗 ∈ ℕ0)
6160adantl 277 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → 𝑗 ∈ ℕ0)
6259, 61expcld 10765 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐵𝑗) ∈ ℂ)
6358, 62mulcld 8047 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝐴↑(𝑘𝑗)) · (𝐵𝑗)) ∈ ℂ)
6454, 63mulcld 8047 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) ∈ ℂ)
6550nnap0d 9036 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) # 0)
6648, 51, 64, 65fsumdivapc 11615 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (Σ𝑗 ∈ (0...𝑘)((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)) = Σ𝑗 ∈ (0...𝑘)(((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)))
6755, 61expcld 10765 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐴𝑗) ∈ ℂ)
6861, 12syl 14 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘𝑗) ∈ ℕ)
6968nncnd 9004 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘𝑗) ∈ ℂ)
7068nnap0d 9036 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘𝑗) # 0)
7167, 69, 70divclapd 8817 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝐴𝑗) / (!‘𝑗)) ∈ ℂ)
7233eftvalcn 11822 . . . . . . . . . . . 12 ((𝐵 ∈ ℂ ∧ (𝑘𝑗) ∈ ℕ0) → (𝐺‘(𝑘𝑗)) = ((𝐵↑(𝑘𝑗)) / (!‘(𝑘𝑗))))
7359, 57, 72syl2anc 411 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐺‘(𝑘𝑗)) = ((𝐵↑(𝑘𝑗)) / (!‘(𝑘𝑗))))
7459, 57expcld 10765 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐵↑(𝑘𝑗)) ∈ ℂ)
75 faccl 10827 . . . . . . . . . . . . . 14 ((𝑘𝑗) ∈ ℕ0 → (!‘(𝑘𝑗)) ∈ ℕ)
7657, 75syl 14 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘(𝑘𝑗)) ∈ ℕ)
7776nncnd 9004 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘(𝑘𝑗)) ∈ ℂ)
7876nnap0d 9036 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘(𝑘𝑗)) # 0)
7974, 77, 78divclapd 8817 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝐵↑(𝑘𝑗)) / (!‘(𝑘𝑗))) ∈ ℂ)
8073, 79eqeltrd 2273 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐺‘(𝑘𝑗)) ∈ ℂ)
8171, 80mulcld 8047 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝐴𝑗) / (!‘𝑗)) · (𝐺‘(𝑘𝑗))) ∈ ℂ)
82 oveq2 5930 . . . . . . . . . . 11 (𝑗 = ((0 + 𝑘) − 𝑚) → (𝐴𝑗) = (𝐴↑((0 + 𝑘) − 𝑚)))
83 fveq2 5558 . . . . . . . . . . 11 (𝑗 = ((0 + 𝑘) − 𝑚) → (!‘𝑗) = (!‘((0 + 𝑘) − 𝑚)))
8482, 83oveq12d 5940 . . . . . . . . . 10 (𝑗 = ((0 + 𝑘) − 𝑚) → ((𝐴𝑗) / (!‘𝑗)) = ((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))))
85 oveq2 5930 . . . . . . . . . . 11 (𝑗 = ((0 + 𝑘) − 𝑚) → (𝑘𝑗) = (𝑘 − ((0 + 𝑘) − 𝑚)))
8685fveq2d 5562 . . . . . . . . . 10 (𝑗 = ((0 + 𝑘) − 𝑚) → (𝐺‘(𝑘𝑗)) = (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚))))
8784, 86oveq12d 5940 . . . . . . . . 9 (𝑗 = ((0 + 𝑘) − 𝑚) → (((𝐴𝑗) / (!‘𝑗)) · (𝐺‘(𝑘𝑗))) = (((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚)))))
8846, 47, 81, 87fisumrev2 11611 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → Σ𝑗 ∈ (0...𝑘)(((𝐴𝑗) / (!‘𝑗)) · (𝐺‘(𝑘𝑗))) = Σ𝑚 ∈ (0...𝑘)(((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚)))))
8933eftvalcn 11822 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐺𝑗) = ((𝐵𝑗) / (!‘𝑗)))
9059, 61, 89syl2anc 411 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐺𝑗) = ((𝐵𝑗) / (!‘𝑗)))
9190oveq2d 5938 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝐴↑(𝑘𝑗)) / (!‘(𝑘𝑗))) · (𝐺𝑗)) = (((𝐴↑(𝑘𝑗)) / (!‘(𝑘𝑗))) · ((𝐵𝑗) / (!‘𝑗))))
9276, 68nnmulcld 9039 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((!‘(𝑘𝑗)) · (!‘𝑗)) ∈ ℕ)
9392nncnd 9004 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((!‘(𝑘𝑗)) · (!‘𝑗)) ∈ ℂ)
9477, 69, 78, 70mulap0d 8685 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((!‘(𝑘𝑗)) · (!‘𝑗)) # 0)
9563, 93, 94divrecap2d 8821 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝐴↑(𝑘𝑗)) · (𝐵𝑗)) / ((!‘(𝑘𝑗)) · (!‘𝑗))) = ((1 / ((!‘(𝑘𝑗)) · (!‘𝑗))) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))))
9658, 77, 62, 69, 78, 70divmuldivapd 8859 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝐴↑(𝑘𝑗)) / (!‘(𝑘𝑗))) · ((𝐵𝑗) / (!‘𝑗))) = (((𝐴↑(𝑘𝑗)) · (𝐵𝑗)) / ((!‘(𝑘𝑗)) · (!‘𝑗))))
97 bcval2 10842 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...𝑘) → (𝑘C𝑗) = ((!‘𝑘) / ((!‘(𝑘𝑗)) · (!‘𝑗))))
9897adantl 277 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘C𝑗) = ((!‘𝑘) / ((!‘(𝑘𝑗)) · (!‘𝑗))))
9998oveq1d 5937 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝑘C𝑗) / (!‘𝑘)) = (((!‘𝑘) / ((!‘(𝑘𝑗)) · (!‘𝑗))) / (!‘𝑘)))
10051adantr 276 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘𝑘) ∈ ℂ)
10165adantr 276 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘𝑘) # 0)
102100, 93, 100, 94, 101divdiv32apd 8843 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((!‘𝑘) / ((!‘(𝑘𝑗)) · (!‘𝑗))) / (!‘𝑘)) = (((!‘𝑘) / (!‘𝑘)) / ((!‘(𝑘𝑗)) · (!‘𝑗))))
103100, 101dividapd 8813 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((!‘𝑘) / (!‘𝑘)) = 1)
104103oveq1d 5937 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((!‘𝑘) / (!‘𝑘)) / ((!‘(𝑘𝑗)) · (!‘𝑗))) = (1 / ((!‘(𝑘𝑗)) · (!‘𝑗))))
105102, 104eqtrd 2229 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((!‘𝑘) / ((!‘(𝑘𝑗)) · (!‘𝑗))) / (!‘𝑘)) = (1 / ((!‘(𝑘𝑗)) · (!‘𝑗))))
10699, 105eqtrd 2229 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝑘C𝑗) / (!‘𝑘)) = (1 / ((!‘(𝑘𝑗)) · (!‘𝑗))))
107106oveq1d 5937 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝑘C𝑗) / (!‘𝑘)) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) = ((1 / ((!‘(𝑘𝑗)) · (!‘𝑗))) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))))
10895, 96, 1073eqtr4rd 2240 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝑘C𝑗) / (!‘𝑘)) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) = (((𝐴↑(𝑘𝑗)) / (!‘(𝑘𝑗))) · ((𝐵𝑗) / (!‘𝑗))))
10991, 108eqtr4d 2232 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝐴↑(𝑘𝑗)) / (!‘(𝑘𝑗))) · (𝐺𝑗)) = (((𝑘C𝑗) / (!‘𝑘)) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))))
110 nn0cn 9259 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
111110ad2antlr 489 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → 𝑘 ∈ ℂ)
112111addlidd 8176 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (0 + 𝑘) = 𝑘)
113112oveq1d 5937 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((0 + 𝑘) − 𝑗) = (𝑘𝑗))
114113oveq2d 5938 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐴↑((0 + 𝑘) − 𝑗)) = (𝐴↑(𝑘𝑗)))
115113fveq2d 5562 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘((0 + 𝑘) − 𝑗)) = (!‘(𝑘𝑗)))
116114, 115oveq12d 5940 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) = ((𝐴↑(𝑘𝑗)) / (!‘(𝑘𝑗))))
117113oveq2d 5938 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘 − ((0 + 𝑘) − 𝑗)) = (𝑘 − (𝑘𝑗)))
118 nn0cn 9259 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ0𝑗 ∈ ℂ)
11961, 118syl 14 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → 𝑗 ∈ ℂ)
120111, 119nncand 8342 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘 − (𝑘𝑗)) = 𝑗)
121117, 120eqtrd 2229 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘 − ((0 + 𝑘) − 𝑗)) = 𝑗)
122121fveq2d 5562 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗))) = (𝐺𝑗))
123116, 122oveq12d 5940 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗)))) = (((𝐴↑(𝑘𝑗)) / (!‘(𝑘𝑗))) · (𝐺𝑗)))
12454, 63, 100, 101div23apd 8855 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)) = (((𝑘C𝑗) / (!‘𝑘)) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))))
125109, 123, 1243eqtr4rd 2240 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)) = (((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗)))))
126125sumeq2dv 11533 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → Σ𝑗 ∈ (0...𝑘)(((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)) = Σ𝑗 ∈ (0...𝑘)(((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗)))))
127 oveq2 5930 . . . . . . . . . . . . 13 (𝑗 = 𝑚 → ((0 + 𝑘) − 𝑗) = ((0 + 𝑘) − 𝑚))
128127oveq2d 5938 . . . . . . . . . . . 12 (𝑗 = 𝑚 → (𝐴↑((0 + 𝑘) − 𝑗)) = (𝐴↑((0 + 𝑘) − 𝑚)))
129127fveq2d 5562 . . . . . . . . . . . 12 (𝑗 = 𝑚 → (!‘((0 + 𝑘) − 𝑗)) = (!‘((0 + 𝑘) − 𝑚)))
130128, 129oveq12d 5940 . . . . . . . . . . 11 (𝑗 = 𝑚 → ((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) = ((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))))
131127oveq2d 5938 . . . . . . . . . . . 12 (𝑗 = 𝑚 → (𝑘 − ((0 + 𝑘) − 𝑗)) = (𝑘 − ((0 + 𝑘) − 𝑚)))
132131fveq2d 5562 . . . . . . . . . . 11 (𝑗 = 𝑚 → (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗))) = (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚))))
133130, 132oveq12d 5940 . . . . . . . . . 10 (𝑗 = 𝑚 → (((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗)))) = (((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚)))))
134133cbvsumv 11526 . . . . . . . . 9 Σ𝑗 ∈ (0...𝑘)(((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗)))) = Σ𝑚 ∈ (0...𝑘)(((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚))))
135126, 134eqtrdi 2245 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → Σ𝑗 ∈ (0...𝑘)(((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)) = Σ𝑚 ∈ (0...𝑘)(((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚)))))
13688, 135eqtr4d 2232 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → Σ𝑗 ∈ (0...𝑘)(((𝐴𝑗) / (!‘𝑗)) · (𝐺‘(𝑘𝑗))) = Σ𝑗 ∈ (0...𝑘)(((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)))
13766, 136eqtr4d 2232 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (Σ𝑗 ∈ (0...𝑘)((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)) = Σ𝑗 ∈ (0...𝑘)(((𝐴𝑗) / (!‘𝑗)) · (𝐺‘(𝑘𝑗))))
13845, 137eqtrd 2229 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (((𝐴 + 𝐵)↑𝑘) / (!‘𝑘)) = Σ𝑗 ∈ (0...𝑘)(((𝐴𝑗) / (!‘𝑗)) · (𝐺‘(𝑘𝑗))))
13939, 138eqtrd 2229 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(((𝐴𝑗) / (!‘𝑗)) · (𝐺‘(𝑘𝑗))))
14027efcllem 11824 . . . . 5 ((abs‘𝐴) ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
14126, 140syl 14 . . . 4 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
14233efcllem 11824 . . . . 5 (𝐵 ∈ ℂ → seq0( + , 𝐺) ∈ dom ⇝ )
1432, 142syl 14 . . . 4 (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
1447efcllem 11824 . . . . 5 (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ )
1451, 144syl 14 . . . 4 (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ )
1469, 30, 32, 35, 37, 139, 141, 143, 145mertensabs 11702 . . 3 (𝜑 → seq0( + , 𝐻) ⇝ (Σ𝑗 ∈ ℕ0 ((𝐴𝑗) / (!‘𝑗)) · Σ𝑘 ∈ ℕ0 ((𝐵𝑘) / (!‘𝑘))))
147 efval 11826 . . . . 5 (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑗 ∈ ℕ0 ((𝐴𝑗) / (!‘𝑗)))
1481, 147syl 14 . . . 4 (𝜑 → (exp‘𝐴) = Σ𝑗 ∈ ℕ0 ((𝐴𝑗) / (!‘𝑗)))
149 efval 11826 . . . . 5 (𝐵 ∈ ℂ → (exp‘𝐵) = Σ𝑘 ∈ ℕ0 ((𝐵𝑘) / (!‘𝑘)))
1502, 149syl 14 . . . 4 (𝜑 → (exp‘𝐵) = Σ𝑘 ∈ ℕ0 ((𝐵𝑘) / (!‘𝑘)))
151148, 150oveq12d 5940 . . 3 (𝜑 → ((exp‘𝐴) · (exp‘𝐵)) = (Σ𝑗 ∈ ℕ0 ((𝐴𝑗) / (!‘𝑗)) · Σ𝑘 ∈ ℕ0 ((𝐵𝑘) / (!‘𝑘))))
152146, 151breqtrrd 4061 . 2 (𝜑 → seq0( + , 𝐻) ⇝ ((exp‘𝐴) · (exp‘𝐵)))
153 climuni 11458 . 2 ((seq0( + , 𝐻) ⇝ (exp‘(𝐴 + 𝐵)) ∧ seq0( + , 𝐻) ⇝ ((exp‘𝐴) · (exp‘𝐵))) → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵)))
1546, 152, 153syl2anc 411 1 (𝜑 → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167   class class class wbr 4033  cmpt 4094  dom cdm 4663  cfv 5258  (class class class)co 5922  cc 7877  0cc0 7879  1c1 7880   + caddc 7882   · cmul 7884  cmin 8197   # cap 8608   / cdiv 8699  cn 8990  0cn0 9249  ...cfz 10083  seqcseq 10539  cexp 10630  !cfa 10817  Ccbc 10839  abscabs 11162  cli 11443  Σcsu 11518  expce 11807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-disj 4011  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7050  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-ico 9969  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-fac 10818  df-bc 10840  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519  df-ef 11813
This theorem is referenced by:  efadd  11840
  Copyright terms: Public domain W3C validator