| Step | Hyp | Ref
| Expression |
| 1 | | efadd.4 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 2 | | efadd.5 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 3 | 1, 2 | addcld 8046 |
. . 3
⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) |
| 4 | | efadd.3 |
. . . 4
⊢ 𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝐴 + 𝐵)↑𝑛) / (!‘𝑛))) |
| 5 | 4 | efcvg 11831 |
. . 3
⊢ ((𝐴 + 𝐵) ∈ ℂ → seq0( + , 𝐻) ⇝ (exp‘(𝐴 + 𝐵))) |
| 6 | 3, 5 | syl 14 |
. 2
⊢ (𝜑 → seq0( + , 𝐻) ⇝ (exp‘(𝐴 + 𝐵))) |
| 7 | | efadd.1 |
. . . . . 6
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) |
| 8 | 7 | eftvalcn 11822 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
→ (𝐹‘𝑗) = ((𝐴↑𝑗) / (!‘𝑗))) |
| 9 | 1, 8 | sylan 283 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐹‘𝑗) = ((𝐴↑𝑗) / (!‘𝑗))) |
| 10 | | absexp 11244 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
→ (abs‘(𝐴↑𝑗)) = ((abs‘𝐴)↑𝑗)) |
| 11 | 1, 10 | sylan 283 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(abs‘(𝐴↑𝑗)) = ((abs‘𝐴)↑𝑗)) |
| 12 | | faccl 10827 |
. . . . . . . 8
⊢ (𝑗 ∈ ℕ0
→ (!‘𝑗) ∈
ℕ) |
| 13 | 12 | adantl 277 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(!‘𝑗) ∈
ℕ) |
| 14 | | nnre 8997 |
. . . . . . . 8
⊢
((!‘𝑗) ∈
ℕ → (!‘𝑗)
∈ ℝ) |
| 15 | | nnnn0 9256 |
. . . . . . . . 9
⊢
((!‘𝑗) ∈
ℕ → (!‘𝑗)
∈ ℕ0) |
| 16 | 15 | nn0ge0d 9305 |
. . . . . . . 8
⊢
((!‘𝑗) ∈
ℕ → 0 ≤ (!‘𝑗)) |
| 17 | 14, 16 | absidd 11332 |
. . . . . . 7
⊢
((!‘𝑗) ∈
ℕ → (abs‘(!‘𝑗)) = (!‘𝑗)) |
| 18 | 13, 17 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(abs‘(!‘𝑗)) =
(!‘𝑗)) |
| 19 | 11, 18 | oveq12d 5940 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((abs‘(𝐴↑𝑗)) / (abs‘(!‘𝑗))) = (((abs‘𝐴)↑𝑗) / (!‘𝑗))) |
| 20 | | expcl 10649 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
→ (𝐴↑𝑗) ∈
ℂ) |
| 21 | 1, 20 | sylan 283 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐴↑𝑗) ∈ ℂ) |
| 22 | 13 | nncnd 9004 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(!‘𝑗) ∈
ℂ) |
| 23 | 13 | nnap0d 9036 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(!‘𝑗) #
0) |
| 24 | 21, 22, 23 | absdivapd 11360 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(abs‘((𝐴↑𝑗) / (!‘𝑗))) = ((abs‘(𝐴↑𝑗)) / (abs‘(!‘𝑗)))) |
| 25 | 1 | abscld 11346 |
. . . . . . 7
⊢ (𝜑 → (abs‘𝐴) ∈
ℝ) |
| 26 | 25 | recnd 8055 |
. . . . . 6
⊢ (𝜑 → (abs‘𝐴) ∈
ℂ) |
| 27 | | eqid 2196 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0
↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦
(((abs‘𝐴)↑𝑛) / (!‘𝑛))) |
| 28 | 27 | eftvalcn 11822 |
. . . . . 6
⊢
(((abs‘𝐴)
∈ ℂ ∧ 𝑗
∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦
(((abs‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑗) = (((abs‘𝐴)↑𝑗) / (!‘𝑗))) |
| 29 | 26, 28 | sylan 283 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑗) = (((abs‘𝐴)↑𝑗) / (!‘𝑗))) |
| 30 | 19, 24, 29 | 3eqtr4rd 2240 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑗) = (abs‘((𝐴↑𝑗) / (!‘𝑗)))) |
| 31 | | eftcl 11819 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
→ ((𝐴↑𝑗) / (!‘𝑗)) ∈ ℂ) |
| 32 | 1, 31 | sylan 283 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((𝐴↑𝑗) / (!‘𝑗)) ∈ ℂ) |
| 33 | | efadd.2 |
. . . . . 6
⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ ((𝐵↑𝑛) / (!‘𝑛))) |
| 34 | 33 | eftvalcn 11822 |
. . . . 5
⊢ ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐺‘𝑘) = ((𝐵↑𝑘) / (!‘𝑘))) |
| 35 | 2, 34 | sylan 283 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) = ((𝐵↑𝑘) / (!‘𝑘))) |
| 36 | | eftcl 11819 |
. . . . 5
⊢ ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝐵↑𝑘) / (!‘𝑘)) ∈ ℂ) |
| 37 | 2, 36 | sylan 283 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐵↑𝑘) / (!‘𝑘)) ∈ ℂ) |
| 38 | 4 | eftvalcn 11822 |
. . . . . 6
⊢ (((𝐴 + 𝐵) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐻‘𝑘) = (((𝐴 + 𝐵)↑𝑘) / (!‘𝑘))) |
| 39 | 3, 38 | sylan 283 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐻‘𝑘) = (((𝐴 + 𝐵)↑𝑘) / (!‘𝑘))) |
| 40 | 1 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈
ℂ) |
| 41 | 2 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈
ℂ) |
| 42 | | simpr 110 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) |
| 43 | | binom 11649 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝐴 + 𝐵)↑𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑘C𝑗) · ((𝐴↑(𝑘 − 𝑗)) · (𝐵↑𝑗)))) |
| 44 | 40, 41, 42, 43 | syl3anc 1249 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑘C𝑗) · ((𝐴↑(𝑘 − 𝑗)) · (𝐵↑𝑗)))) |
| 45 | 44 | oveq1d 5937 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝐴 + 𝐵)↑𝑘) / (!‘𝑘)) = (Σ𝑗 ∈ (0...𝑘)((𝑘C𝑗) · ((𝐴↑(𝑘 − 𝑗)) · (𝐵↑𝑗))) / (!‘𝑘))) |
| 46 | | 0zd 9338 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 0 ∈
ℤ) |
| 47 | 42 | nn0zd 9446 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℤ) |
| 48 | 46, 47 | fzfigd 10523 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(0...𝑘) ∈
Fin) |
| 49 | | faccl 10827 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
→ (!‘𝑘) ∈
ℕ) |
| 50 | 49 | adantl 277 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(!‘𝑘) ∈
ℕ) |
| 51 | 50 | nncnd 9004 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(!‘𝑘) ∈
ℂ) |
| 52 | | bccl2 10860 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0...𝑘) → (𝑘C𝑗) ∈ ℕ) |
| 53 | 52 | adantl 277 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘C𝑗) ∈ ℕ) |
| 54 | 53 | nncnd 9004 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘C𝑗) ∈ ℂ) |
| 55 | 1 | ad2antrr 488 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → 𝐴 ∈ ℂ) |
| 56 | | fznn0sub 10132 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0...𝑘) → (𝑘 − 𝑗) ∈
ℕ0) |
| 57 | 56 | adantl 277 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘 − 𝑗) ∈
ℕ0) |
| 58 | 55, 57 | expcld 10765 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐴↑(𝑘 − 𝑗)) ∈ ℂ) |
| 59 | 2 | ad2antrr 488 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → 𝐵 ∈ ℂ) |
| 60 | | elfznn0 10189 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0...𝑘) → 𝑗 ∈ ℕ0) |
| 61 | 60 | adantl 277 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → 𝑗 ∈ ℕ0) |
| 62 | 59, 61 | expcld 10765 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐵↑𝑗) ∈ ℂ) |
| 63 | 58, 62 | mulcld 8047 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝐴↑(𝑘 − 𝑗)) · (𝐵↑𝑗)) ∈ ℂ) |
| 64 | 54, 63 | mulcld 8047 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝑘C𝑗) · ((𝐴↑(𝑘 − 𝑗)) · (𝐵↑𝑗))) ∈ ℂ) |
| 65 | 50 | nnap0d 9036 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(!‘𝑘) #
0) |
| 66 | 48, 51, 64, 65 | fsumdivapc 11615 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(Σ𝑗 ∈ (0...𝑘)((𝑘C𝑗) · ((𝐴↑(𝑘 − 𝑗)) · (𝐵↑𝑗))) / (!‘𝑘)) = Σ𝑗 ∈ (0...𝑘)(((𝑘C𝑗) · ((𝐴↑(𝑘 − 𝑗)) · (𝐵↑𝑗))) / (!‘𝑘))) |
| 67 | 55, 61 | expcld 10765 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐴↑𝑗) ∈ ℂ) |
| 68 | 61, 12 | syl 14 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘𝑗) ∈ ℕ) |
| 69 | 68 | nncnd 9004 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘𝑗) ∈ ℂ) |
| 70 | 68 | nnap0d 9036 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘𝑗) # 0) |
| 71 | 67, 69, 70 | divclapd 8817 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝐴↑𝑗) / (!‘𝑗)) ∈ ℂ) |
| 72 | 33 | eftvalcn 11822 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ℂ ∧ (𝑘 − 𝑗) ∈ ℕ0) → (𝐺‘(𝑘 − 𝑗)) = ((𝐵↑(𝑘 − 𝑗)) / (!‘(𝑘 − 𝑗)))) |
| 73 | 59, 57, 72 | syl2anc 411 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐺‘(𝑘 − 𝑗)) = ((𝐵↑(𝑘 − 𝑗)) / (!‘(𝑘 − 𝑗)))) |
| 74 | 59, 57 | expcld 10765 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐵↑(𝑘 − 𝑗)) ∈ ℂ) |
| 75 | | faccl 10827 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 − 𝑗) ∈ ℕ0 →
(!‘(𝑘 − 𝑗)) ∈
ℕ) |
| 76 | 57, 75 | syl 14 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘(𝑘 − 𝑗)) ∈ ℕ) |
| 77 | 76 | nncnd 9004 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘(𝑘 − 𝑗)) ∈ ℂ) |
| 78 | 76 | nnap0d 9036 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘(𝑘 − 𝑗)) # 0) |
| 79 | 74, 77, 78 | divclapd 8817 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝐵↑(𝑘 − 𝑗)) / (!‘(𝑘 − 𝑗))) ∈ ℂ) |
| 80 | 73, 79 | eqeltrd 2273 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐺‘(𝑘 − 𝑗)) ∈ ℂ) |
| 81 | 71, 80 | mulcld 8047 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝐴↑𝑗) / (!‘𝑗)) · (𝐺‘(𝑘 − 𝑗))) ∈ ℂ) |
| 82 | | oveq2 5930 |
. . . . . . . . . . 11
⊢ (𝑗 = ((0 + 𝑘) − 𝑚) → (𝐴↑𝑗) = (𝐴↑((0 + 𝑘) − 𝑚))) |
| 83 | | fveq2 5558 |
. . . . . . . . . . 11
⊢ (𝑗 = ((0 + 𝑘) − 𝑚) → (!‘𝑗) = (!‘((0 + 𝑘) − 𝑚))) |
| 84 | 82, 83 | oveq12d 5940 |
. . . . . . . . . 10
⊢ (𝑗 = ((0 + 𝑘) − 𝑚) → ((𝐴↑𝑗) / (!‘𝑗)) = ((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚)))) |
| 85 | | oveq2 5930 |
. . . . . . . . . . 11
⊢ (𝑗 = ((0 + 𝑘) − 𝑚) → (𝑘 − 𝑗) = (𝑘 − ((0 + 𝑘) − 𝑚))) |
| 86 | 85 | fveq2d 5562 |
. . . . . . . . . 10
⊢ (𝑗 = ((0 + 𝑘) − 𝑚) → (𝐺‘(𝑘 − 𝑗)) = (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚)))) |
| 87 | 84, 86 | oveq12d 5940 |
. . . . . . . . 9
⊢ (𝑗 = ((0 + 𝑘) − 𝑚) → (((𝐴↑𝑗) / (!‘𝑗)) · (𝐺‘(𝑘 − 𝑗))) = (((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚))))) |
| 88 | 46, 47, 81, 87 | fisumrev2 11611 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
Σ𝑗 ∈ (0...𝑘)(((𝐴↑𝑗) / (!‘𝑗)) · (𝐺‘(𝑘 − 𝑗))) = Σ𝑚 ∈ (0...𝑘)(((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚))))) |
| 89 | 33 | eftvalcn 11822 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
→ (𝐺‘𝑗) = ((𝐵↑𝑗) / (!‘𝑗))) |
| 90 | 59, 61, 89 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐺‘𝑗) = ((𝐵↑𝑗) / (!‘𝑗))) |
| 91 | 90 | oveq2d 5938 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝐴↑(𝑘 − 𝑗)) / (!‘(𝑘 − 𝑗))) · (𝐺‘𝑗)) = (((𝐴↑(𝑘 − 𝑗)) / (!‘(𝑘 − 𝑗))) · ((𝐵↑𝑗) / (!‘𝑗)))) |
| 92 | 76, 68 | nnmulcld 9039 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((!‘(𝑘 − 𝑗)) · (!‘𝑗)) ∈ ℕ) |
| 93 | 92 | nncnd 9004 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((!‘(𝑘 − 𝑗)) · (!‘𝑗)) ∈ ℂ) |
| 94 | 77, 69, 78, 70 | mulap0d 8685 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((!‘(𝑘 − 𝑗)) · (!‘𝑗)) # 0) |
| 95 | 63, 93, 94 | divrecap2d 8821 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝐴↑(𝑘 − 𝑗)) · (𝐵↑𝑗)) / ((!‘(𝑘 − 𝑗)) · (!‘𝑗))) = ((1 / ((!‘(𝑘 − 𝑗)) · (!‘𝑗))) · ((𝐴↑(𝑘 − 𝑗)) · (𝐵↑𝑗)))) |
| 96 | 58, 77, 62, 69, 78, 70 | divmuldivapd 8859 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝐴↑(𝑘 − 𝑗)) / (!‘(𝑘 − 𝑗))) · ((𝐵↑𝑗) / (!‘𝑗))) = (((𝐴↑(𝑘 − 𝑗)) · (𝐵↑𝑗)) / ((!‘(𝑘 − 𝑗)) · (!‘𝑗)))) |
| 97 | | bcval2 10842 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (0...𝑘) → (𝑘C𝑗) = ((!‘𝑘) / ((!‘(𝑘 − 𝑗)) · (!‘𝑗)))) |
| 98 | 97 | adantl 277 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘C𝑗) = ((!‘𝑘) / ((!‘(𝑘 − 𝑗)) · (!‘𝑗)))) |
| 99 | 98 | oveq1d 5937 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝑘C𝑗) / (!‘𝑘)) = (((!‘𝑘) / ((!‘(𝑘 − 𝑗)) · (!‘𝑗))) / (!‘𝑘))) |
| 100 | 51 | adantr 276 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘𝑘) ∈ ℂ) |
| 101 | 65 | adantr 276 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘𝑘) # 0) |
| 102 | 100, 93, 100, 94, 101 | divdiv32apd 8843 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((!‘𝑘) / ((!‘(𝑘 − 𝑗)) · (!‘𝑗))) / (!‘𝑘)) = (((!‘𝑘) / (!‘𝑘)) / ((!‘(𝑘 − 𝑗)) · (!‘𝑗)))) |
| 103 | 100, 101 | dividapd 8813 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((!‘𝑘) / (!‘𝑘)) = 1) |
| 104 | 103 | oveq1d 5937 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((!‘𝑘) / (!‘𝑘)) / ((!‘(𝑘 − 𝑗)) · (!‘𝑗))) = (1 / ((!‘(𝑘 − 𝑗)) · (!‘𝑗)))) |
| 105 | 102, 104 | eqtrd 2229 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((!‘𝑘) / ((!‘(𝑘 − 𝑗)) · (!‘𝑗))) / (!‘𝑘)) = (1 / ((!‘(𝑘 − 𝑗)) · (!‘𝑗)))) |
| 106 | 99, 105 | eqtrd 2229 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝑘C𝑗) / (!‘𝑘)) = (1 / ((!‘(𝑘 − 𝑗)) · (!‘𝑗)))) |
| 107 | 106 | oveq1d 5937 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝑘C𝑗) / (!‘𝑘)) · ((𝐴↑(𝑘 − 𝑗)) · (𝐵↑𝑗))) = ((1 / ((!‘(𝑘 − 𝑗)) · (!‘𝑗))) · ((𝐴↑(𝑘 − 𝑗)) · (𝐵↑𝑗)))) |
| 108 | 95, 96, 107 | 3eqtr4rd 2240 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝑘C𝑗) / (!‘𝑘)) · ((𝐴↑(𝑘 − 𝑗)) · (𝐵↑𝑗))) = (((𝐴↑(𝑘 − 𝑗)) / (!‘(𝑘 − 𝑗))) · ((𝐵↑𝑗) / (!‘𝑗)))) |
| 109 | 91, 108 | eqtr4d 2232 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝐴↑(𝑘 − 𝑗)) / (!‘(𝑘 − 𝑗))) · (𝐺‘𝑗)) = (((𝑘C𝑗) / (!‘𝑘)) · ((𝐴↑(𝑘 − 𝑗)) · (𝐵↑𝑗)))) |
| 110 | | nn0cn 9259 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℂ) |
| 111 | 110 | ad2antlr 489 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → 𝑘 ∈ ℂ) |
| 112 | 111 | addlidd 8176 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (0 + 𝑘) = 𝑘) |
| 113 | 112 | oveq1d 5937 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((0 + 𝑘) − 𝑗) = (𝑘 − 𝑗)) |
| 114 | 113 | oveq2d 5938 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐴↑((0 + 𝑘) − 𝑗)) = (𝐴↑(𝑘 − 𝑗))) |
| 115 | 113 | fveq2d 5562 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘((0 + 𝑘) − 𝑗)) = (!‘(𝑘 − 𝑗))) |
| 116 | 114, 115 | oveq12d 5940 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) = ((𝐴↑(𝑘 − 𝑗)) / (!‘(𝑘 − 𝑗)))) |
| 117 | 113 | oveq2d 5938 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘 − ((0 + 𝑘) − 𝑗)) = (𝑘 − (𝑘 − 𝑗))) |
| 118 | | nn0cn 9259 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ ℕ0
→ 𝑗 ∈
ℂ) |
| 119 | 61, 118 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → 𝑗 ∈ ℂ) |
| 120 | 111, 119 | nncand 8342 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘 − (𝑘 − 𝑗)) = 𝑗) |
| 121 | 117, 120 | eqtrd 2229 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘 − ((0 + 𝑘) − 𝑗)) = 𝑗) |
| 122 | 121 | fveq2d 5562 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗))) = (𝐺‘𝑗)) |
| 123 | 116, 122 | oveq12d 5940 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗)))) = (((𝐴↑(𝑘 − 𝑗)) / (!‘(𝑘 − 𝑗))) · (𝐺‘𝑗))) |
| 124 | 54, 63, 100, 101 | div23apd 8855 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝑘C𝑗) · ((𝐴↑(𝑘 − 𝑗)) · (𝐵↑𝑗))) / (!‘𝑘)) = (((𝑘C𝑗) / (!‘𝑘)) · ((𝐴↑(𝑘 − 𝑗)) · (𝐵↑𝑗)))) |
| 125 | 109, 123,
124 | 3eqtr4rd 2240 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝑘C𝑗) · ((𝐴↑(𝑘 − 𝑗)) · (𝐵↑𝑗))) / (!‘𝑘)) = (((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗))))) |
| 126 | 125 | sumeq2dv 11533 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
Σ𝑗 ∈ (0...𝑘)(((𝑘C𝑗) · ((𝐴↑(𝑘 − 𝑗)) · (𝐵↑𝑗))) / (!‘𝑘)) = Σ𝑗 ∈ (0...𝑘)(((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗))))) |
| 127 | | oveq2 5930 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑚 → ((0 + 𝑘) − 𝑗) = ((0 + 𝑘) − 𝑚)) |
| 128 | 127 | oveq2d 5938 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑚 → (𝐴↑((0 + 𝑘) − 𝑗)) = (𝐴↑((0 + 𝑘) − 𝑚))) |
| 129 | 127 | fveq2d 5562 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑚 → (!‘((0 + 𝑘) − 𝑗)) = (!‘((0 + 𝑘) − 𝑚))) |
| 130 | 128, 129 | oveq12d 5940 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑚 → ((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) = ((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚)))) |
| 131 | 127 | oveq2d 5938 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑚 → (𝑘 − ((0 + 𝑘) − 𝑗)) = (𝑘 − ((0 + 𝑘) − 𝑚))) |
| 132 | 131 | fveq2d 5562 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑚 → (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗))) = (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚)))) |
| 133 | 130, 132 | oveq12d 5940 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑚 → (((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗)))) = (((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚))))) |
| 134 | 133 | cbvsumv 11526 |
. . . . . . . . 9
⊢
Σ𝑗 ∈
(0...𝑘)(((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗)))) = Σ𝑚 ∈ (0...𝑘)(((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚)))) |
| 135 | 126, 134 | eqtrdi 2245 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
Σ𝑗 ∈ (0...𝑘)(((𝑘C𝑗) · ((𝐴↑(𝑘 − 𝑗)) · (𝐵↑𝑗))) / (!‘𝑘)) = Σ𝑚 ∈ (0...𝑘)(((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚))))) |
| 136 | 88, 135 | eqtr4d 2232 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
Σ𝑗 ∈ (0...𝑘)(((𝐴↑𝑗) / (!‘𝑗)) · (𝐺‘(𝑘 − 𝑗))) = Σ𝑗 ∈ (0...𝑘)(((𝑘C𝑗) · ((𝐴↑(𝑘 − 𝑗)) · (𝐵↑𝑗))) / (!‘𝑘))) |
| 137 | 66, 136 | eqtr4d 2232 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(Σ𝑗 ∈ (0...𝑘)((𝑘C𝑗) · ((𝐴↑(𝑘 − 𝑗)) · (𝐵↑𝑗))) / (!‘𝑘)) = Σ𝑗 ∈ (0...𝑘)(((𝐴↑𝑗) / (!‘𝑗)) · (𝐺‘(𝑘 − 𝑗)))) |
| 138 | 45, 137 | eqtrd 2229 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝐴 + 𝐵)↑𝑘) / (!‘𝑘)) = Σ𝑗 ∈ (0...𝑘)(((𝐴↑𝑗) / (!‘𝑗)) · (𝐺‘(𝑘 − 𝑗)))) |
| 139 | 39, 138 | eqtrd 2229 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐻‘𝑘) = Σ𝑗 ∈ (0...𝑘)(((𝐴↑𝑗) / (!‘𝑗)) · (𝐺‘(𝑘 − 𝑗)))) |
| 140 | 27 | efcllem 11824 |
. . . . 5
⊢
((abs‘𝐴)
∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦
(((abs‘𝐴)↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ ) |
| 141 | 26, 140 | syl 14 |
. . . 4
⊢ (𝜑 → seq0( + , (𝑛 ∈ ℕ0
↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ ) |
| 142 | 33 | efcllem 11824 |
. . . . 5
⊢ (𝐵 ∈ ℂ → seq0( + ,
𝐺) ∈ dom ⇝
) |
| 143 | 2, 142 | syl 14 |
. . . 4
⊢ (𝜑 → seq0( + , 𝐺) ∈ dom ⇝
) |
| 144 | 7 | efcllem 11824 |
. . . . 5
⊢ (𝐴 ∈ ℂ → seq0( + ,
𝐹) ∈ dom ⇝
) |
| 145 | 1, 144 | syl 14 |
. . . 4
⊢ (𝜑 → seq0( + , 𝐹) ∈ dom ⇝
) |
| 146 | 9, 30, 32, 35, 37, 139, 141, 143, 145 | mertensabs 11702 |
. . 3
⊢ (𝜑 → seq0( + , 𝐻) ⇝ (Σ𝑗 ∈ ℕ0
((𝐴↑𝑗) / (!‘𝑗)) · Σ𝑘 ∈ ℕ0 ((𝐵↑𝑘) / (!‘𝑘)))) |
| 147 | | efval 11826 |
. . . . 5
⊢ (𝐴 ∈ ℂ →
(exp‘𝐴) =
Σ𝑗 ∈
ℕ0 ((𝐴↑𝑗) / (!‘𝑗))) |
| 148 | 1, 147 | syl 14 |
. . . 4
⊢ (𝜑 → (exp‘𝐴) = Σ𝑗 ∈ ℕ0 ((𝐴↑𝑗) / (!‘𝑗))) |
| 149 | | efval 11826 |
. . . . 5
⊢ (𝐵 ∈ ℂ →
(exp‘𝐵) =
Σ𝑘 ∈
ℕ0 ((𝐵↑𝑘) / (!‘𝑘))) |
| 150 | 2, 149 | syl 14 |
. . . 4
⊢ (𝜑 → (exp‘𝐵) = Σ𝑘 ∈ ℕ0 ((𝐵↑𝑘) / (!‘𝑘))) |
| 151 | 148, 150 | oveq12d 5940 |
. . 3
⊢ (𝜑 → ((exp‘𝐴) · (exp‘𝐵)) = (Σ𝑗 ∈ ℕ0 ((𝐴↑𝑗) / (!‘𝑗)) · Σ𝑘 ∈ ℕ0 ((𝐵↑𝑘) / (!‘𝑘)))) |
| 152 | 146, 151 | breqtrrd 4061 |
. 2
⊢ (𝜑 → seq0( + , 𝐻) ⇝ ((exp‘𝐴) · (exp‘𝐵))) |
| 153 | | climuni 11458 |
. 2
⊢ ((seq0( +
, 𝐻) ⇝
(exp‘(𝐴 + 𝐵)) ∧ seq0( + , 𝐻) ⇝ ((exp‘𝐴) · (exp‘𝐵))) → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵))) |
| 154 | 6, 152, 153 | syl2anc 411 |
1
⊢ (𝜑 → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵))) |