ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moddvds GIF version

Theorem moddvds 11536
Description: Two ways to say 𝐴𝐵 (mod 𝑁), see also definition in [ApostolNT] p. 106. (Contributed by Mario Carneiro, 18-Feb-2014.)
Assertion
Ref Expression
moddvds ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) ↔ 𝑁 ∥ (𝐴𝐵)))

Proof of Theorem moddvds
StepHypRef Expression
1 nnq 9451 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
21adantr 274 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → 𝑁 ∈ ℚ)
3 nngt0 8768 . . . . . 6 (𝑁 ∈ ℕ → 0 < 𝑁)
43adantr 274 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → 0 < 𝑁)
5 q0mod 10158 . . . . 5 ((𝑁 ∈ ℚ ∧ 0 < 𝑁) → (0 mod 𝑁) = 0)
62, 4, 5syl2anc 409 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (0 mod 𝑁) = 0)
76eqeq2d 2152 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (((𝐴𝐵) mod 𝑁) = (0 mod 𝑁) ↔ ((𝐴𝐵) mod 𝑁) = 0))
8 zq 9444 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
98ad2antrl 482 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → 𝐴 ∈ ℚ)
109adantr 274 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ (𝐴 mod 𝑁) = (𝐵 mod 𝑁)) → 𝐴 ∈ ℚ)
11 zq 9444 . . . . . . . . 9 (𝐵 ∈ ℤ → 𝐵 ∈ ℚ)
1211ad2antll 483 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → 𝐵 ∈ ℚ)
1312adantr 274 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ (𝐴 mod 𝑁) = (𝐵 mod 𝑁)) → 𝐵 ∈ ℚ)
14 qnegcl 9454 . . . . . . . 8 (𝐵 ∈ ℚ → -𝐵 ∈ ℚ)
1513, 14syl 14 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ (𝐴 mod 𝑁) = (𝐵 mod 𝑁)) → -𝐵 ∈ ℚ)
162adantr 274 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ (𝐴 mod 𝑁) = (𝐵 mod 𝑁)) → 𝑁 ∈ ℚ)
174adantr 274 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ (𝐴 mod 𝑁) = (𝐵 mod 𝑁)) → 0 < 𝑁)
18 simpr 109 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ (𝐴 mod 𝑁) = (𝐵 mod 𝑁)) → (𝐴 mod 𝑁) = (𝐵 mod 𝑁))
1910, 13, 15, 16, 17, 18modqadd1 10164 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ (𝐴 mod 𝑁) = (𝐵 mod 𝑁)) → ((𝐴 + -𝐵) mod 𝑁) = ((𝐵 + -𝐵) mod 𝑁))
2019ex 114 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) → ((𝐴 + -𝐵) mod 𝑁) = ((𝐵 + -𝐵) mod 𝑁)))
21 simprl 521 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → 𝐴 ∈ ℤ)
2221zcnd 9197 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → 𝐴 ∈ ℂ)
23 simprr 522 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → 𝐵 ∈ ℤ)
2423zcnd 9197 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → 𝐵 ∈ ℂ)
2522, 24negsubd 8102 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (𝐴 + -𝐵) = (𝐴𝐵))
2625oveq1d 5796 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((𝐴 + -𝐵) mod 𝑁) = ((𝐴𝐵) mod 𝑁))
2724negidd 8086 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (𝐵 + -𝐵) = 0)
2827oveq1d 5796 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((𝐵 + -𝐵) mod 𝑁) = (0 mod 𝑁))
2926, 28eqeq12d 2155 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (((𝐴 + -𝐵) mod 𝑁) = ((𝐵 + -𝐵) mod 𝑁) ↔ ((𝐴𝐵) mod 𝑁) = (0 mod 𝑁)))
3020, 29sylibd 148 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) → ((𝐴𝐵) mod 𝑁) = (0 mod 𝑁)))
319adantr 274 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ ((𝐴𝐵) mod 𝑁) = (0 mod 𝑁)) → 𝐴 ∈ ℚ)
3212adantr 274 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ ((𝐴𝐵) mod 𝑁) = (0 mod 𝑁)) → 𝐵 ∈ ℚ)
33 qsubcl 9456 . . . . . . . 8 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴𝐵) ∈ ℚ)
3431, 32, 33syl2anc 409 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ ((𝐴𝐵) mod 𝑁) = (0 mod 𝑁)) → (𝐴𝐵) ∈ ℚ)
35 0z 9088 . . . . . . . 8 0 ∈ ℤ
36 zq 9444 . . . . . . . 8 (0 ∈ ℤ → 0 ∈ ℚ)
3735, 36mp1i 10 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ ((𝐴𝐵) mod 𝑁) = (0 mod 𝑁)) → 0 ∈ ℚ)
382adantr 274 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ ((𝐴𝐵) mod 𝑁) = (0 mod 𝑁)) → 𝑁 ∈ ℚ)
394adantr 274 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ ((𝐴𝐵) mod 𝑁) = (0 mod 𝑁)) → 0 < 𝑁)
40 simpr 109 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ ((𝐴𝐵) mod 𝑁) = (0 mod 𝑁)) → ((𝐴𝐵) mod 𝑁) = (0 mod 𝑁))
4134, 37, 32, 38, 39, 40modqadd1 10164 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ ((𝐴𝐵) mod 𝑁) = (0 mod 𝑁)) → (((𝐴𝐵) + 𝐵) mod 𝑁) = ((0 + 𝐵) mod 𝑁))
4241ex 114 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (((𝐴𝐵) mod 𝑁) = (0 mod 𝑁) → (((𝐴𝐵) + 𝐵) mod 𝑁) = ((0 + 𝐵) mod 𝑁)))
4322, 24npcand 8100 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((𝐴𝐵) + 𝐵) = 𝐴)
4443oveq1d 5796 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (((𝐴𝐵) + 𝐵) mod 𝑁) = (𝐴 mod 𝑁))
4524addid2d 7935 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (0 + 𝐵) = 𝐵)
4645oveq1d 5796 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((0 + 𝐵) mod 𝑁) = (𝐵 mod 𝑁))
4744, 46eqeq12d 2155 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((((𝐴𝐵) + 𝐵) mod 𝑁) = ((0 + 𝐵) mod 𝑁) ↔ (𝐴 mod 𝑁) = (𝐵 mod 𝑁)))
4842, 47sylibd 148 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (((𝐴𝐵) mod 𝑁) = (0 mod 𝑁) → (𝐴 mod 𝑁) = (𝐵 mod 𝑁)))
4930, 48impbid 128 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) ↔ ((𝐴𝐵) mod 𝑁) = (0 mod 𝑁)))
50 zsubcl 9118 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
51 dvdsval3 11531 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴𝐵) ∈ ℤ) → (𝑁 ∥ (𝐴𝐵) ↔ ((𝐴𝐵) mod 𝑁) = 0))
5250, 51sylan2 284 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (𝑁 ∥ (𝐴𝐵) ↔ ((𝐴𝐵) mod 𝑁) = 0))
537, 49, 523bitr4d 219 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) ↔ 𝑁 ∥ (𝐴𝐵)))
54533impb 1178 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) ↔ 𝑁 ∥ (𝐴𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1332  wcel 1481   class class class wbr 3936  (class class class)co 5781  0cc0 7643   + caddc 7646   < clt 7823  cmin 7956  -cneg 7957  cn 8743  cz 9077  cq 9437   mod cmo 10125  cdvds 11527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-mulrcl 7742  ax-addcom 7743  ax-mulcom 7744  ax-addass 7745  ax-mulass 7746  ax-distr 7747  ax-i2m1 7748  ax-0lt1 7749  ax-1rid 7750  ax-0id 7751  ax-rnegex 7752  ax-precex 7753  ax-cnre 7754  ax-pre-ltirr 7755  ax-pre-ltwlin 7756  ax-pre-lttrn 7757  ax-pre-apti 7758  ax-pre-ltadd 7759  ax-pre-mulgt0 7760  ax-pre-mulext 7761  ax-arch 7762
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-id 4222  df-po 4225  df-iso 4226  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-fv 5138  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1st 6045  df-2nd 6046  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829  df-sub 7958  df-neg 7959  df-reap 8360  df-ap 8367  df-div 8456  df-inn 8744  df-n0 9001  df-z 9078  df-q 9438  df-rp 9470  df-fl 10073  df-mod 10126  df-dvds 11528
This theorem is referenced by:  summodnegmod  11558  modmulconst  11559  addmodlteqALT  11591  dvdsmod  11594  congr  11815  cncongr1  11818  cncongr2  11819  crth  11934
  Copyright terms: Public domain W3C validator