| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qliftfund | GIF version | ||
| Description: The function 𝐹 is the unique function defined by 𝐹‘[𝑥] = 𝐴, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| qlift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) |
| qlift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) |
| qlift.3 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
| qlift.4 | ⊢ (𝜑 → 𝑋 ∈ V) |
| qliftfun.4 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
| qliftfund.6 | ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| qliftfund | ⊢ (𝜑 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qliftfund.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝐴 = 𝐵) | |
| 2 | 1 | ex 115 | . . 3 ⊢ (𝜑 → (𝑥𝑅𝑦 → 𝐴 = 𝐵)) |
| 3 | 2 | alrimivv 1897 | . 2 ⊢ (𝜑 → ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝐴 = 𝐵)) |
| 4 | qlift.1 | . . 3 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) | |
| 5 | qlift.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) | |
| 6 | qlift.3 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 7 | qlift.4 | . . 3 ⊢ (𝜑 → 𝑋 ∈ V) | |
| 8 | qliftfun.4 | . . 3 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
| 9 | 4, 5, 6, 7, 8 | qliftfun 6694 | . 2 ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝐴 = 𝐵))) |
| 10 | 3, 9 | mpbird 167 | 1 ⊢ (𝜑 → Fun 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1370 = wceq 1372 ∈ wcel 2175 Vcvv 2771 〈cop 3635 class class class wbr 4043 ↦ cmpt 4104 ran crn 4674 Fun wfun 5262 Er wer 6607 [cec 6608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-fv 5276 df-er 6610 df-ec 6612 df-qs 6616 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |