Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > qliftfund | GIF version |
Description: The function 𝐹 is the unique function defined by 𝐹‘[𝑥] = 𝐴, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
qlift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) |
qlift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) |
qlift.3 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
qlift.4 | ⊢ (𝜑 → 𝑋 ∈ V) |
qliftfun.4 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
qliftfund.6 | ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
qliftfund | ⊢ (𝜑 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qliftfund.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝐴 = 𝐵) | |
2 | 1 | ex 114 | . . 3 ⊢ (𝜑 → (𝑥𝑅𝑦 → 𝐴 = 𝐵)) |
3 | 2 | alrimivv 1868 | . 2 ⊢ (𝜑 → ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝐴 = 𝐵)) |
4 | qlift.1 | . . 3 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) | |
5 | qlift.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) | |
6 | qlift.3 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
7 | qlift.4 | . . 3 ⊢ (𝜑 → 𝑋 ∈ V) | |
8 | qliftfun.4 | . . 3 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
9 | 4, 5, 6, 7, 8 | qliftfun 6595 | . 2 ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝐴 = 𝐵))) |
10 | 3, 9 | mpbird 166 | 1 ⊢ (𝜑 → Fun 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wal 1346 = wceq 1348 ∈ wcel 2141 Vcvv 2730 〈cop 3586 class class class wbr 3989 ↦ cmpt 4050 ran crn 4612 Fun wfun 5192 Er wer 6510 [cec 6511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-er 6513 df-ec 6515 df-qs 6519 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |