ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qliftfund GIF version

Theorem qliftfund 6672
Description: The function 𝐹 is the unique function defined by 𝐹‘[𝑥] = 𝐴, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
qlift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
qlift.2 ((𝜑𝑥𝑋) → 𝐴𝑌)
qlift.3 (𝜑𝑅 Er 𝑋)
qlift.4 (𝜑𝑋 ∈ V)
qliftfun.4 (𝑥 = 𝑦𝐴 = 𝐵)
qliftfund.6 ((𝜑𝑥𝑅𝑦) → 𝐴 = 𝐵)
Assertion
Ref Expression
qliftfund (𝜑 → Fun 𝐹)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑥,𝑦,𝜑   𝑥,𝑅,𝑦   𝑦,𝐹   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)   𝐹(𝑥)

Proof of Theorem qliftfund
StepHypRef Expression
1 qliftfund.6 . . . 4 ((𝜑𝑥𝑅𝑦) → 𝐴 = 𝐵)
21ex 115 . . 3 (𝜑 → (𝑥𝑅𝑦𝐴 = 𝐵))
32alrimivv 1886 . 2 (𝜑 → ∀𝑥𝑦(𝑥𝑅𝑦𝐴 = 𝐵))
4 qlift.1 . . 3 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
5 qlift.2 . . 3 ((𝜑𝑥𝑋) → 𝐴𝑌)
6 qlift.3 . . 3 (𝜑𝑅 Er 𝑋)
7 qlift.4 . . 3 (𝜑𝑋 ∈ V)
8 qliftfun.4 . . 3 (𝑥 = 𝑦𝐴 = 𝐵)
94, 5, 6, 7, 8qliftfun 6671 . 2 (𝜑 → (Fun 𝐹 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝐴 = 𝐵)))
103, 9mpbird 167 1 (𝜑 → Fun 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1362   = wceq 1364  wcel 2164  Vcvv 2760  cop 3621   class class class wbr 4029  cmpt 4090  ran crn 4660  Fun wfun 5248   Er wer 6584  [cec 6585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-er 6587  df-ec 6589  df-qs 6593
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator