Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  exmidsbth GIF version

Theorem exmidsbth 15506
Description: The Schroeder-Bernstein Theorem is equivalent to excluded middle. This is Metamath 100 proof #25. The forward direction (isbth 7020) is the proof of the Schroeder-Bernstein Theorem from the Metamath Proof Explorer database (in which excluded middle holds), but adapted to use EXMID as an antecedent rather than being unconditionally true, as in the non-intuitionistic proof at https://us.metamath.org/mpeuni/sbth.html 7020.

The reverse direction (exmidsbthr 15505) is the one which establishes that Schroeder-Bernstein implies excluded middle. This resolves the question of whether we will be able to prove Schroeder-Bernstein from our axioms in the negative. (Contributed by Jim Kingdon, 13-Aug-2022.)

Assertion
Ref Expression
exmidsbth (EXMID ↔ ∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦))
Distinct variable group:   𝑥,𝑦

Proof of Theorem exmidsbth
StepHypRef Expression
1 isbth 7020 . . . 4 ((EXMID ∧ (𝑥𝑦𝑦𝑥)) → 𝑥𝑦)
21ex 115 . . 3 (EXMID → ((𝑥𝑦𝑦𝑥) → 𝑥𝑦))
32alrimivv 1886 . 2 (EXMID → ∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦))
4 exmidsbthr 15505 . 2 (∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) → EXMID)
53, 4impbii 126 1 (EXMID ↔ ∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362   class class class wbr 4029  EXMIDwem 4223  cen 6787  cdom 6788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4462  ax-setind 4567  ax-iinf 4618
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-exmid 4224  df-id 4322  df-iord 4395  df-on 4397  df-suc 4400  df-iom 4621  df-xp 4663  df-rel 4664  df-cnv 4665  df-co 4666  df-dm 4667  df-rn 4668  df-res 4669  df-ima 4670  df-iota 5211  df-fun 5252  df-fn 5253  df-f 5254  df-f1 5255  df-fo 5256  df-f1o 5257  df-fv 5258  df-ov 5917  df-oprab 5918  df-mpo 5919  df-1st 6188  df-2nd 6189  df-1o 6464  df-2o 6465  df-map 6699  df-en 6790  df-dom 6791  df-dju 7091  df-inl 7100  df-inr 7101  df-case 7137  df-nninf 7173  df-omni 7188
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator