![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > exmidsbth | GIF version |
Description: The Schroeder-Bernstein
Theorem is equivalent to excluded middle. This
is Metamath 100 proof #25. The forward direction (isbth 7020) is the
proof of the Schroeder-Bernstein Theorem from the Metamath Proof
Explorer database (in which excluded middle holds), but adapted to use
EXMID as an antecedent rather
than being unconditionally true, as in
the non-intuitionistic proof at
https://us.metamath.org/mpeuni/sbth.html 7020.
The reverse direction (exmidsbthr 15505) is the one which establishes that Schroeder-Bernstein implies excluded middle. This resolves the question of whether we will be able to prove Schroeder-Bernstein from our axioms in the negative. (Contributed by Jim Kingdon, 13-Aug-2022.) |
Ref | Expression |
---|---|
exmidsbth | ⊢ (EXMID ↔ ∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isbth 7020 | . . . 4 ⊢ ((EXMID ∧ (𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥)) → 𝑥 ≈ 𝑦) | |
2 | 1 | ex 115 | . . 3 ⊢ (EXMID → ((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦)) |
3 | 2 | alrimivv 1886 | . 2 ⊢ (EXMID → ∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦)) |
4 | exmidsbthr 15505 | . 2 ⊢ (∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) → EXMID) | |
5 | 3, 4 | impbii 126 | 1 ⊢ (EXMID ↔ ∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 class class class wbr 4029 EXMIDwem 4223 ≈ cen 6787 ≼ cdom 6788 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4462 ax-setind 4567 ax-iinf 4618 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-exmid 4224 df-id 4322 df-iord 4395 df-on 4397 df-suc 4400 df-iom 4621 df-xp 4663 df-rel 4664 df-cnv 4665 df-co 4666 df-dm 4667 df-rn 4668 df-res 4669 df-ima 4670 df-iota 5211 df-fun 5252 df-fn 5253 df-f 5254 df-f1 5255 df-fo 5256 df-f1o 5257 df-fv 5258 df-ov 5917 df-oprab 5918 df-mpo 5919 df-1st 6188 df-2nd 6189 df-1o 6464 df-2o 6465 df-map 6699 df-en 6790 df-dom 6791 df-dju 7091 df-inl 7100 df-inr 7101 df-case 7137 df-nninf 7173 df-omni 7188 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |