Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > exmidsbth | GIF version |
Description: The Schroeder-Bernstein
Theorem is equivalent to excluded middle. This
is Metamath 100 proof #25. The forward direction (isbth 6956) is the
proof of the Schroeder-Bernstein Theorem from the Metamath Proof
Explorer database (in which excluded middle holds), but adapted to use
EXMID as an antecedent rather
than being unconditionally true, as in
the non-intuitionistic proof at
https://us.metamath.org/mpeuni/sbth.html 6956.
The reverse direction (exmidsbthr 14332) is the one which establishes that Schroeder-Bernstein implies excluded middle. This resolves the question of whether we will be able to prove Schroeder-Bernstein from our axioms in the negative. (Contributed by Jim Kingdon, 13-Aug-2022.) |
Ref | Expression |
---|---|
exmidsbth | ⊢ (EXMID ↔ ∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isbth 6956 | . . . 4 ⊢ ((EXMID ∧ (𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥)) → 𝑥 ≈ 𝑦) | |
2 | 1 | ex 115 | . . 3 ⊢ (EXMID → ((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦)) |
3 | 2 | alrimivv 1873 | . 2 ⊢ (EXMID → ∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦)) |
4 | exmidsbthr 14332 | . 2 ⊢ (∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) → EXMID) | |
5 | 3, 4 | impbii 126 | 1 ⊢ (EXMID ↔ ∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1351 class class class wbr 3998 EXMIDwem 4189 ≈ cen 6728 ≼ cdom 6729 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-exmid 4190 df-id 4287 df-iord 4360 df-on 4362 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-1o 6407 df-2o 6408 df-map 6640 df-en 6731 df-dom 6732 df-dju 7027 df-inl 7036 df-inr 7037 df-case 7073 df-nninf 7109 df-omni 7123 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |