Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  exmidsbth GIF version

Theorem exmidsbth 15925
Description: The Schroeder-Bernstein Theorem is equivalent to excluded middle. This is Metamath 100 proof #25. The forward direction (isbth 7068) is the proof of the Schroeder-Bernstein Theorem from the Metamath Proof Explorer database (in which excluded middle holds), but adapted to use EXMID as an antecedent rather than being unconditionally true, as in the non-intuitionistic proof at https://us.metamath.org/mpeuni/sbth.html 7068.

The reverse direction (exmidsbthr 15924) is the one which establishes that Schroeder-Bernstein implies excluded middle. This resolves the question of whether we will be able to prove Schroeder-Bernstein from our axioms in the negative. (Contributed by Jim Kingdon, 13-Aug-2022.)

Assertion
Ref Expression
exmidsbth (EXMID ↔ ∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦))
Distinct variable group:   𝑥,𝑦

Proof of Theorem exmidsbth
StepHypRef Expression
1 isbth 7068 . . . 4 ((EXMID ∧ (𝑥𝑦𝑦𝑥)) → 𝑥𝑦)
21ex 115 . . 3 (EXMID → ((𝑥𝑦𝑦𝑥) → 𝑥𝑦))
32alrimivv 1897 . 2 (EXMID → ∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦))
4 exmidsbthr 15924 . 2 (∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) → EXMID)
53, 4impbii 126 1 (EXMID ↔ ∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1370   class class class wbr 4043  EXMIDwem 4237  cen 6824  cdom 6825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-exmid 4238  df-id 4339  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-1o 6501  df-2o 6502  df-map 6736  df-en 6827  df-dom 6828  df-dju 7139  df-inl 7148  df-inr 7149  df-case 7185  df-nninf 7221  df-omni 7236
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator