| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axltwlin | GIF version | ||
| Description: Real number less-than is weakly linear. Axiom for real and complex numbers, derived from set theory. This restates ax-pre-ltwlin 8011 with ordering on the extended reals. (Contributed by Jim Kingdon, 15-Jan-2020.) |
| Ref | Expression |
|---|---|
| axltwlin | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴 < 𝐶 ∨ 𝐶 < 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-pre-ltwlin 8011 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐴 <ℝ 𝐶 ∨ 𝐶 <ℝ 𝐵))) | |
| 2 | ltxrlt 8111 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 𝐴 <ℝ 𝐵)) | |
| 3 | 2 | 3adant3 1019 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ 𝐴 <ℝ 𝐵)) |
| 4 | ltxrlt 8111 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 ↔ 𝐴 <ℝ 𝐶)) | |
| 5 | 4 | 3adant2 1018 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 ↔ 𝐴 <ℝ 𝐶)) |
| 6 | ltxrlt 8111 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 < 𝐵 ↔ 𝐶 <ℝ 𝐵)) | |
| 7 | 6 | ancoms 268 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < 𝐵 ↔ 𝐶 <ℝ 𝐵)) |
| 8 | 7 | 3adant1 1017 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < 𝐵 ↔ 𝐶 <ℝ 𝐵)) |
| 9 | 5, 8 | orbi12d 794 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐶 ∨ 𝐶 < 𝐵) ↔ (𝐴 <ℝ 𝐶 ∨ 𝐶 <ℝ 𝐵))) |
| 10 | 1, 3, 9 | 3imtr4d 203 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴 < 𝐶 ∨ 𝐶 < 𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 709 ∧ w3a 980 ∈ wcel 2167 class class class wbr 4034 ℝcr 7897 <ℝ cltrr 7902 < clt 8080 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-pre-ltwlin 8011 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-pnf 8082 df-mnf 8083 df-ltxr 8085 |
| This theorem is referenced by: ltso 8123 letr 8128 lelttr 8134 ltletr 8135 gt0add 8619 reapcotr 8644 sup3exmid 9003 xrltso 9890 rebtwn2zlemstep 10361 expnbnd 10774 leabs 11258 ltabs 11271 abslt 11272 absle 11273 maxabslemlub 11391 suplociccreex 14968 ivthinclemloc 14985 ivthdichlem 14995 cnplimclemle 15012 reeff1o 15117 efltlemlt 15118 sin0pilem2 15126 coseq0negpitopi 15180 cos02pilt1 15195 |
| Copyright terms: Public domain | W3C validator |