ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axltwlin GIF version

Theorem axltwlin 8182
Description: Real number less-than is weakly linear. Axiom for real and complex numbers, derived from set theory. This restates ax-pre-ltwlin 8080 with ordering on the extended reals. (Contributed by Jim Kingdon, 15-Jan-2020.)
Assertion
Ref Expression
axltwlin ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴 < 𝐶𝐶 < 𝐵)))

Proof of Theorem axltwlin
StepHypRef Expression
1 ax-pre-ltwlin 8080 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴 < 𝐶𝐶 < 𝐵)))
2 ltxrlt 8180 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < 𝐵))
323adant3 1022 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵𝐴 < 𝐵))
4 ltxrlt 8180 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶𝐴 < 𝐶))
543adant2 1021 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶𝐴 < 𝐶))
6 ltxrlt 8180 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 < 𝐵𝐶 < 𝐵))
76ancoms 268 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < 𝐵𝐶 < 𝐵))
873adant1 1020 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < 𝐵𝐶 < 𝐵))
95, 8orbi12d 797 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐶𝐶 < 𝐵) ↔ (𝐴 < 𝐶𝐶 < 𝐵)))
101, 3, 93imtr4d 203 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴 < 𝐶𝐶 < 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wo 712  w3a 983  wcel 2180   class class class wbr 4062  cr 7966   < cltrr 7971   < clt 8149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-pre-ltwlin 8080
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-rab 2497  df-v 2781  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-xp 4702  df-pnf 8151  df-mnf 8152  df-ltxr 8154
This theorem is referenced by:  ltso  8192  letr  8197  lelttr  8203  ltletr  8204  gt0add  8688  reapcotr  8713  sup3exmid  9072  xrltso  9960  rebtwn2zlemstep  10439  expnbnd  10852  leabs  11551  ltabs  11564  abslt  11565  absle  11566  maxabslemlub  11684  suplociccreex  15263  ivthinclemloc  15280  ivthdichlem  15290  cnplimclemle  15307  reeff1o  15412  efltlemlt  15413  sin0pilem2  15421  coseq0negpitopi  15475  cos02pilt1  15490
  Copyright terms: Public domain W3C validator