| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axltwlin | GIF version | ||
| Description: Real number less-than is weakly linear. Axiom for real and complex numbers, derived from set theory. This restates ax-pre-ltwlin 8080 with ordering on the extended reals. (Contributed by Jim Kingdon, 15-Jan-2020.) |
| Ref | Expression |
|---|---|
| axltwlin | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴 < 𝐶 ∨ 𝐶 < 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-pre-ltwlin 8080 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐴 <ℝ 𝐶 ∨ 𝐶 <ℝ 𝐵))) | |
| 2 | ltxrlt 8180 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 𝐴 <ℝ 𝐵)) | |
| 3 | 2 | 3adant3 1022 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ 𝐴 <ℝ 𝐵)) |
| 4 | ltxrlt 8180 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 ↔ 𝐴 <ℝ 𝐶)) | |
| 5 | 4 | 3adant2 1021 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 ↔ 𝐴 <ℝ 𝐶)) |
| 6 | ltxrlt 8180 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 < 𝐵 ↔ 𝐶 <ℝ 𝐵)) | |
| 7 | 6 | ancoms 268 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < 𝐵 ↔ 𝐶 <ℝ 𝐵)) |
| 8 | 7 | 3adant1 1020 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < 𝐵 ↔ 𝐶 <ℝ 𝐵)) |
| 9 | 5, 8 | orbi12d 797 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐶 ∨ 𝐶 < 𝐵) ↔ (𝐴 <ℝ 𝐶 ∨ 𝐶 <ℝ 𝐵))) |
| 10 | 1, 3, 9 | 3imtr4d 203 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴 < 𝐶 ∨ 𝐶 < 𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 712 ∧ w3a 983 ∈ wcel 2180 class class class wbr 4062 ℝcr 7966 <ℝ cltrr 7971 < clt 8149 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-pre-ltwlin 8080 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-xp 4702 df-pnf 8151 df-mnf 8152 df-ltxr 8154 |
| This theorem is referenced by: ltso 8192 letr 8197 lelttr 8203 ltletr 8204 gt0add 8688 reapcotr 8713 sup3exmid 9072 xrltso 9960 rebtwn2zlemstep 10439 expnbnd 10852 leabs 11551 ltabs 11564 abslt 11565 absle 11566 maxabslemlub 11684 suplociccreex 15263 ivthinclemloc 15280 ivthdichlem 15290 cnplimclemle 15307 reeff1o 15412 efltlemlt 15413 sin0pilem2 15421 coseq0negpitopi 15475 cos02pilt1 15490 |
| Copyright terms: Public domain | W3C validator |