ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnaword GIF version

Theorem nnaword 6599
Description: Weak ordering property of addition. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaword ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵)))

Proof of Theorem nnaword
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5953 . . . . . . 7 (𝑥 = 𝐶 → (𝑥 +o 𝐴) = (𝐶 +o 𝐴))
2 oveq1 5953 . . . . . . 7 (𝑥 = 𝐶 → (𝑥 +o 𝐵) = (𝐶 +o 𝐵))
31, 2sseq12d 3224 . . . . . 6 (𝑥 = 𝐶 → ((𝑥 +o 𝐴) ⊆ (𝑥 +o 𝐵) ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵)))
43bibi2d 232 . . . . 5 (𝑥 = 𝐶 → ((𝐴𝐵 ↔ (𝑥 +o 𝐴) ⊆ (𝑥 +o 𝐵)) ↔ (𝐴𝐵 ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵))))
54imbi2d 230 . . . 4 (𝑥 = 𝐶 → (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ (𝑥 +o 𝐴) ⊆ (𝑥 +o 𝐵))) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵)))))
6 oveq1 5953 . . . . . . 7 (𝑥 = ∅ → (𝑥 +o 𝐴) = (∅ +o 𝐴))
7 oveq1 5953 . . . . . . 7 (𝑥 = ∅ → (𝑥 +o 𝐵) = (∅ +o 𝐵))
86, 7sseq12d 3224 . . . . . 6 (𝑥 = ∅ → ((𝑥 +o 𝐴) ⊆ (𝑥 +o 𝐵) ↔ (∅ +o 𝐴) ⊆ (∅ +o 𝐵)))
98bibi2d 232 . . . . 5 (𝑥 = ∅ → ((𝐴𝐵 ↔ (𝑥 +o 𝐴) ⊆ (𝑥 +o 𝐵)) ↔ (𝐴𝐵 ↔ (∅ +o 𝐴) ⊆ (∅ +o 𝐵))))
10 oveq1 5953 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 +o 𝐴) = (𝑦 +o 𝐴))
11 oveq1 5953 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 +o 𝐵) = (𝑦 +o 𝐵))
1210, 11sseq12d 3224 . . . . . 6 (𝑥 = 𝑦 → ((𝑥 +o 𝐴) ⊆ (𝑥 +o 𝐵) ↔ (𝑦 +o 𝐴) ⊆ (𝑦 +o 𝐵)))
1312bibi2d 232 . . . . 5 (𝑥 = 𝑦 → ((𝐴𝐵 ↔ (𝑥 +o 𝐴) ⊆ (𝑥 +o 𝐵)) ↔ (𝐴𝐵 ↔ (𝑦 +o 𝐴) ⊆ (𝑦 +o 𝐵))))
14 oveq1 5953 . . . . . . 7 (𝑥 = suc 𝑦 → (𝑥 +o 𝐴) = (suc 𝑦 +o 𝐴))
15 oveq1 5953 . . . . . . 7 (𝑥 = suc 𝑦 → (𝑥 +o 𝐵) = (suc 𝑦 +o 𝐵))
1614, 15sseq12d 3224 . . . . . 6 (𝑥 = suc 𝑦 → ((𝑥 +o 𝐴) ⊆ (𝑥 +o 𝐵) ↔ (suc 𝑦 +o 𝐴) ⊆ (suc 𝑦 +o 𝐵)))
1716bibi2d 232 . . . . 5 (𝑥 = suc 𝑦 → ((𝐴𝐵 ↔ (𝑥 +o 𝐴) ⊆ (𝑥 +o 𝐵)) ↔ (𝐴𝐵 ↔ (suc 𝑦 +o 𝐴) ⊆ (suc 𝑦 +o 𝐵))))
18 nna0r 6566 . . . . . . . 8 (𝐴 ∈ ω → (∅ +o 𝐴) = 𝐴)
1918eqcomd 2211 . . . . . . 7 (𝐴 ∈ ω → 𝐴 = (∅ +o 𝐴))
2019adantr 276 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐴 = (∅ +o 𝐴))
21 nna0r 6566 . . . . . . . 8 (𝐵 ∈ ω → (∅ +o 𝐵) = 𝐵)
2221eqcomd 2211 . . . . . . 7 (𝐵 ∈ ω → 𝐵 = (∅ +o 𝐵))
2322adantl 277 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐵 = (∅ +o 𝐵))
2420, 23sseq12d 3224 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ (∅ +o 𝐴) ⊆ (∅ +o 𝐵)))
25 nnacl 6568 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (𝑦 +o 𝐴) ∈ ω)
26253adant3 1020 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑦 +o 𝐴) ∈ ω)
27 nnacl 6568 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (𝑦 +o 𝐵) ∈ ω)
28273adant2 1019 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑦 +o 𝐵) ∈ ω)
29 nnsucsssuc 6580 . . . . . . . . . 10 (((𝑦 +o 𝐴) ∈ ω ∧ (𝑦 +o 𝐵) ∈ ω) → ((𝑦 +o 𝐴) ⊆ (𝑦 +o 𝐵) ↔ suc (𝑦 +o 𝐴) ⊆ suc (𝑦 +o 𝐵)))
3026, 28, 29syl2anc 411 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝑦 +o 𝐴) ⊆ (𝑦 +o 𝐵) ↔ suc (𝑦 +o 𝐴) ⊆ suc (𝑦 +o 𝐵)))
31 nnasuc 6564 . . . . . . . . . . . . 13 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
32 peano2 4644 . . . . . . . . . . . . . 14 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
33 nnacom 6572 . . . . . . . . . . . . . 14 ((𝐴 ∈ ω ∧ suc 𝑦 ∈ ω) → (𝐴 +o suc 𝑦) = (suc 𝑦 +o 𝐴))
3432, 33sylan2 286 . . . . . . . . . . . . 13 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o suc 𝑦) = (suc 𝑦 +o 𝐴))
35 nnacom 6572 . . . . . . . . . . . . . 14 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o 𝑦) = (𝑦 +o 𝐴))
36 suceq 4450 . . . . . . . . . . . . . 14 ((𝐴 +o 𝑦) = (𝑦 +o 𝐴) → suc (𝐴 +o 𝑦) = suc (𝑦 +o 𝐴))
3735, 36syl 14 . . . . . . . . . . . . 13 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → suc (𝐴 +o 𝑦) = suc (𝑦 +o 𝐴))
3831, 34, 373eqtr3rd 2247 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → suc (𝑦 +o 𝐴) = (suc 𝑦 +o 𝐴))
3938ancoms 268 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω) → suc (𝑦 +o 𝐴) = (suc 𝑦 +o 𝐴))
40393adant3 1020 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → suc (𝑦 +o 𝐴) = (suc 𝑦 +o 𝐴))
41 nnasuc 6564 . . . . . . . . . . . . 13 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
42 nnacom 6572 . . . . . . . . . . . . . 14 ((𝐵 ∈ ω ∧ suc 𝑦 ∈ ω) → (𝐵 +o suc 𝑦) = (suc 𝑦 +o 𝐵))
4332, 42sylan2 286 . . . . . . . . . . . . 13 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +o suc 𝑦) = (suc 𝑦 +o 𝐵))
44 nnacom 6572 . . . . . . . . . . . . . 14 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +o 𝑦) = (𝑦 +o 𝐵))
45 suceq 4450 . . . . . . . . . . . . . 14 ((𝐵 +o 𝑦) = (𝑦 +o 𝐵) → suc (𝐵 +o 𝑦) = suc (𝑦 +o 𝐵))
4644, 45syl 14 . . . . . . . . . . . . 13 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → suc (𝐵 +o 𝑦) = suc (𝑦 +o 𝐵))
4741, 43, 463eqtr3rd 2247 . . . . . . . . . . . 12 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → suc (𝑦 +o 𝐵) = (suc 𝑦 +o 𝐵))
4847ancoms 268 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → suc (𝑦 +o 𝐵) = (suc 𝑦 +o 𝐵))
49483adant2 1019 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → suc (𝑦 +o 𝐵) = (suc 𝑦 +o 𝐵))
5040, 49sseq12d 3224 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc (𝑦 +o 𝐴) ⊆ suc (𝑦 +o 𝐵) ↔ (suc 𝑦 +o 𝐴) ⊆ (suc 𝑦 +o 𝐵)))
5130, 50bitrd 188 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝑦 +o 𝐴) ⊆ (𝑦 +o 𝐵) ↔ (suc 𝑦 +o 𝐴) ⊆ (suc 𝑦 +o 𝐵)))
5251bibi2d 232 . . . . . . 7 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵 ↔ (𝑦 +o 𝐴) ⊆ (𝑦 +o 𝐵)) ↔ (𝐴𝐵 ↔ (suc 𝑦 +o 𝐴) ⊆ (suc 𝑦 +o 𝐵))))
5352biimpd 144 . . . . . 6 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵 ↔ (𝑦 +o 𝐴) ⊆ (𝑦 +o 𝐵)) → (𝐴𝐵 ↔ (suc 𝑦 +o 𝐴) ⊆ (suc 𝑦 +o 𝐵))))
54533expib 1209 . . . . 5 (𝑦 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵 ↔ (𝑦 +o 𝐴) ⊆ (𝑦 +o 𝐵)) → (𝐴𝐵 ↔ (suc 𝑦 +o 𝐴) ⊆ (suc 𝑦 +o 𝐵)))))
559, 13, 17, 24, 54finds2 4650 . . . 4 (𝑥 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ (𝑥 +o 𝐴) ⊆ (𝑥 +o 𝐵))))
565, 55vtoclga 2839 . . 3 (𝐶 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵))))
5756impcom 125 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵)))
58573impa 1197 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2176  wss 3166  c0 3460  suc csuc 4413  ωcom 4639  (class class class)co 5946   +o coa 6501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-irdg 6458  df-oadd 6508
This theorem is referenced by:  nnacan  6600  nnawordi  6603
  Copyright terms: Public domain W3C validator