ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnaword GIF version

Theorem nnaword 6487
Description: Weak ordering property of addition. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaword ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵)))

Proof of Theorem nnaword
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5857 . . . . . . 7 (𝑥 = 𝐶 → (𝑥 +o 𝐴) = (𝐶 +o 𝐴))
2 oveq1 5857 . . . . . . 7 (𝑥 = 𝐶 → (𝑥 +o 𝐵) = (𝐶 +o 𝐵))
31, 2sseq12d 3178 . . . . . 6 (𝑥 = 𝐶 → ((𝑥 +o 𝐴) ⊆ (𝑥 +o 𝐵) ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵)))
43bibi2d 231 . . . . 5 (𝑥 = 𝐶 → ((𝐴𝐵 ↔ (𝑥 +o 𝐴) ⊆ (𝑥 +o 𝐵)) ↔ (𝐴𝐵 ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵))))
54imbi2d 229 . . . 4 (𝑥 = 𝐶 → (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ (𝑥 +o 𝐴) ⊆ (𝑥 +o 𝐵))) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵)))))
6 oveq1 5857 . . . . . . 7 (𝑥 = ∅ → (𝑥 +o 𝐴) = (∅ +o 𝐴))
7 oveq1 5857 . . . . . . 7 (𝑥 = ∅ → (𝑥 +o 𝐵) = (∅ +o 𝐵))
86, 7sseq12d 3178 . . . . . 6 (𝑥 = ∅ → ((𝑥 +o 𝐴) ⊆ (𝑥 +o 𝐵) ↔ (∅ +o 𝐴) ⊆ (∅ +o 𝐵)))
98bibi2d 231 . . . . 5 (𝑥 = ∅ → ((𝐴𝐵 ↔ (𝑥 +o 𝐴) ⊆ (𝑥 +o 𝐵)) ↔ (𝐴𝐵 ↔ (∅ +o 𝐴) ⊆ (∅ +o 𝐵))))
10 oveq1 5857 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 +o 𝐴) = (𝑦 +o 𝐴))
11 oveq1 5857 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 +o 𝐵) = (𝑦 +o 𝐵))
1210, 11sseq12d 3178 . . . . . 6 (𝑥 = 𝑦 → ((𝑥 +o 𝐴) ⊆ (𝑥 +o 𝐵) ↔ (𝑦 +o 𝐴) ⊆ (𝑦 +o 𝐵)))
1312bibi2d 231 . . . . 5 (𝑥 = 𝑦 → ((𝐴𝐵 ↔ (𝑥 +o 𝐴) ⊆ (𝑥 +o 𝐵)) ↔ (𝐴𝐵 ↔ (𝑦 +o 𝐴) ⊆ (𝑦 +o 𝐵))))
14 oveq1 5857 . . . . . . 7 (𝑥 = suc 𝑦 → (𝑥 +o 𝐴) = (suc 𝑦 +o 𝐴))
15 oveq1 5857 . . . . . . 7 (𝑥 = suc 𝑦 → (𝑥 +o 𝐵) = (suc 𝑦 +o 𝐵))
1614, 15sseq12d 3178 . . . . . 6 (𝑥 = suc 𝑦 → ((𝑥 +o 𝐴) ⊆ (𝑥 +o 𝐵) ↔ (suc 𝑦 +o 𝐴) ⊆ (suc 𝑦 +o 𝐵)))
1716bibi2d 231 . . . . 5 (𝑥 = suc 𝑦 → ((𝐴𝐵 ↔ (𝑥 +o 𝐴) ⊆ (𝑥 +o 𝐵)) ↔ (𝐴𝐵 ↔ (suc 𝑦 +o 𝐴) ⊆ (suc 𝑦 +o 𝐵))))
18 nna0r 6454 . . . . . . . 8 (𝐴 ∈ ω → (∅ +o 𝐴) = 𝐴)
1918eqcomd 2176 . . . . . . 7 (𝐴 ∈ ω → 𝐴 = (∅ +o 𝐴))
2019adantr 274 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐴 = (∅ +o 𝐴))
21 nna0r 6454 . . . . . . . 8 (𝐵 ∈ ω → (∅ +o 𝐵) = 𝐵)
2221eqcomd 2176 . . . . . . 7 (𝐵 ∈ ω → 𝐵 = (∅ +o 𝐵))
2322adantl 275 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐵 = (∅ +o 𝐵))
2420, 23sseq12d 3178 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ (∅ +o 𝐴) ⊆ (∅ +o 𝐵)))
25 nnacl 6456 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (𝑦 +o 𝐴) ∈ ω)
26253adant3 1012 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑦 +o 𝐴) ∈ ω)
27 nnacl 6456 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (𝑦 +o 𝐵) ∈ ω)
28273adant2 1011 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑦 +o 𝐵) ∈ ω)
29 nnsucsssuc 6468 . . . . . . . . . 10 (((𝑦 +o 𝐴) ∈ ω ∧ (𝑦 +o 𝐵) ∈ ω) → ((𝑦 +o 𝐴) ⊆ (𝑦 +o 𝐵) ↔ suc (𝑦 +o 𝐴) ⊆ suc (𝑦 +o 𝐵)))
3026, 28, 29syl2anc 409 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝑦 +o 𝐴) ⊆ (𝑦 +o 𝐵) ↔ suc (𝑦 +o 𝐴) ⊆ suc (𝑦 +o 𝐵)))
31 nnasuc 6452 . . . . . . . . . . . . 13 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
32 peano2 4577 . . . . . . . . . . . . . 14 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
33 nnacom 6460 . . . . . . . . . . . . . 14 ((𝐴 ∈ ω ∧ suc 𝑦 ∈ ω) → (𝐴 +o suc 𝑦) = (suc 𝑦 +o 𝐴))
3432, 33sylan2 284 . . . . . . . . . . . . 13 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o suc 𝑦) = (suc 𝑦 +o 𝐴))
35 nnacom 6460 . . . . . . . . . . . . . 14 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o 𝑦) = (𝑦 +o 𝐴))
36 suceq 4385 . . . . . . . . . . . . . 14 ((𝐴 +o 𝑦) = (𝑦 +o 𝐴) → suc (𝐴 +o 𝑦) = suc (𝑦 +o 𝐴))
3735, 36syl 14 . . . . . . . . . . . . 13 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → suc (𝐴 +o 𝑦) = suc (𝑦 +o 𝐴))
3831, 34, 373eqtr3rd 2212 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → suc (𝑦 +o 𝐴) = (suc 𝑦 +o 𝐴))
3938ancoms 266 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω) → suc (𝑦 +o 𝐴) = (suc 𝑦 +o 𝐴))
40393adant3 1012 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → suc (𝑦 +o 𝐴) = (suc 𝑦 +o 𝐴))
41 nnasuc 6452 . . . . . . . . . . . . 13 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
42 nnacom 6460 . . . . . . . . . . . . . 14 ((𝐵 ∈ ω ∧ suc 𝑦 ∈ ω) → (𝐵 +o suc 𝑦) = (suc 𝑦 +o 𝐵))
4332, 42sylan2 284 . . . . . . . . . . . . 13 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +o suc 𝑦) = (suc 𝑦 +o 𝐵))
44 nnacom 6460 . . . . . . . . . . . . . 14 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +o 𝑦) = (𝑦 +o 𝐵))
45 suceq 4385 . . . . . . . . . . . . . 14 ((𝐵 +o 𝑦) = (𝑦 +o 𝐵) → suc (𝐵 +o 𝑦) = suc (𝑦 +o 𝐵))
4644, 45syl 14 . . . . . . . . . . . . 13 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → suc (𝐵 +o 𝑦) = suc (𝑦 +o 𝐵))
4741, 43, 463eqtr3rd 2212 . . . . . . . . . . . 12 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → suc (𝑦 +o 𝐵) = (suc 𝑦 +o 𝐵))
4847ancoms 266 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → suc (𝑦 +o 𝐵) = (suc 𝑦 +o 𝐵))
49483adant2 1011 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → suc (𝑦 +o 𝐵) = (suc 𝑦 +o 𝐵))
5040, 49sseq12d 3178 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc (𝑦 +o 𝐴) ⊆ suc (𝑦 +o 𝐵) ↔ (suc 𝑦 +o 𝐴) ⊆ (suc 𝑦 +o 𝐵)))
5130, 50bitrd 187 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝑦 +o 𝐴) ⊆ (𝑦 +o 𝐵) ↔ (suc 𝑦 +o 𝐴) ⊆ (suc 𝑦 +o 𝐵)))
5251bibi2d 231 . . . . . . 7 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵 ↔ (𝑦 +o 𝐴) ⊆ (𝑦 +o 𝐵)) ↔ (𝐴𝐵 ↔ (suc 𝑦 +o 𝐴) ⊆ (suc 𝑦 +o 𝐵))))
5352biimpd 143 . . . . . 6 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵 ↔ (𝑦 +o 𝐴) ⊆ (𝑦 +o 𝐵)) → (𝐴𝐵 ↔ (suc 𝑦 +o 𝐴) ⊆ (suc 𝑦 +o 𝐵))))
54533expib 1201 . . . . 5 (𝑦 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵 ↔ (𝑦 +o 𝐴) ⊆ (𝑦 +o 𝐵)) → (𝐴𝐵 ↔ (suc 𝑦 +o 𝐴) ⊆ (suc 𝑦 +o 𝐵)))))
559, 13, 17, 24, 54finds2 4583 . . . 4 (𝑥 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ (𝑥 +o 𝐴) ⊆ (𝑥 +o 𝐵))))
565, 55vtoclga 2796 . . 3 (𝐶 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵))))
5756impcom 124 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵)))
58573impa 1189 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  wss 3121  c0 3414  suc csuc 4348  ωcom 4572  (class class class)co 5850   +o coa 6389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-iord 4349  df-on 4351  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-irdg 6346  df-oadd 6396
This theorem is referenced by:  nnacan  6488  nnawordi  6491
  Copyright terms: Public domain W3C validator