ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnaword GIF version

Theorem nnaword 6540
Description: Weak ordering property of addition. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaword ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵)))

Proof of Theorem nnaword
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5907 . . . . . . 7 (𝑥 = 𝐶 → (𝑥 +o 𝐴) = (𝐶 +o 𝐴))
2 oveq1 5907 . . . . . . 7 (𝑥 = 𝐶 → (𝑥 +o 𝐵) = (𝐶 +o 𝐵))
31, 2sseq12d 3201 . . . . . 6 (𝑥 = 𝐶 → ((𝑥 +o 𝐴) ⊆ (𝑥 +o 𝐵) ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵)))
43bibi2d 232 . . . . 5 (𝑥 = 𝐶 → ((𝐴𝐵 ↔ (𝑥 +o 𝐴) ⊆ (𝑥 +o 𝐵)) ↔ (𝐴𝐵 ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵))))
54imbi2d 230 . . . 4 (𝑥 = 𝐶 → (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ (𝑥 +o 𝐴) ⊆ (𝑥 +o 𝐵))) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵)))))
6 oveq1 5907 . . . . . . 7 (𝑥 = ∅ → (𝑥 +o 𝐴) = (∅ +o 𝐴))
7 oveq1 5907 . . . . . . 7 (𝑥 = ∅ → (𝑥 +o 𝐵) = (∅ +o 𝐵))
86, 7sseq12d 3201 . . . . . 6 (𝑥 = ∅ → ((𝑥 +o 𝐴) ⊆ (𝑥 +o 𝐵) ↔ (∅ +o 𝐴) ⊆ (∅ +o 𝐵)))
98bibi2d 232 . . . . 5 (𝑥 = ∅ → ((𝐴𝐵 ↔ (𝑥 +o 𝐴) ⊆ (𝑥 +o 𝐵)) ↔ (𝐴𝐵 ↔ (∅ +o 𝐴) ⊆ (∅ +o 𝐵))))
10 oveq1 5907 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 +o 𝐴) = (𝑦 +o 𝐴))
11 oveq1 5907 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 +o 𝐵) = (𝑦 +o 𝐵))
1210, 11sseq12d 3201 . . . . . 6 (𝑥 = 𝑦 → ((𝑥 +o 𝐴) ⊆ (𝑥 +o 𝐵) ↔ (𝑦 +o 𝐴) ⊆ (𝑦 +o 𝐵)))
1312bibi2d 232 . . . . 5 (𝑥 = 𝑦 → ((𝐴𝐵 ↔ (𝑥 +o 𝐴) ⊆ (𝑥 +o 𝐵)) ↔ (𝐴𝐵 ↔ (𝑦 +o 𝐴) ⊆ (𝑦 +o 𝐵))))
14 oveq1 5907 . . . . . . 7 (𝑥 = suc 𝑦 → (𝑥 +o 𝐴) = (suc 𝑦 +o 𝐴))
15 oveq1 5907 . . . . . . 7 (𝑥 = suc 𝑦 → (𝑥 +o 𝐵) = (suc 𝑦 +o 𝐵))
1614, 15sseq12d 3201 . . . . . 6 (𝑥 = suc 𝑦 → ((𝑥 +o 𝐴) ⊆ (𝑥 +o 𝐵) ↔ (suc 𝑦 +o 𝐴) ⊆ (suc 𝑦 +o 𝐵)))
1716bibi2d 232 . . . . 5 (𝑥 = suc 𝑦 → ((𝐴𝐵 ↔ (𝑥 +o 𝐴) ⊆ (𝑥 +o 𝐵)) ↔ (𝐴𝐵 ↔ (suc 𝑦 +o 𝐴) ⊆ (suc 𝑦 +o 𝐵))))
18 nna0r 6507 . . . . . . . 8 (𝐴 ∈ ω → (∅ +o 𝐴) = 𝐴)
1918eqcomd 2195 . . . . . . 7 (𝐴 ∈ ω → 𝐴 = (∅ +o 𝐴))
2019adantr 276 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐴 = (∅ +o 𝐴))
21 nna0r 6507 . . . . . . . 8 (𝐵 ∈ ω → (∅ +o 𝐵) = 𝐵)
2221eqcomd 2195 . . . . . . 7 (𝐵 ∈ ω → 𝐵 = (∅ +o 𝐵))
2322adantl 277 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐵 = (∅ +o 𝐵))
2420, 23sseq12d 3201 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ (∅ +o 𝐴) ⊆ (∅ +o 𝐵)))
25 nnacl 6509 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (𝑦 +o 𝐴) ∈ ω)
26253adant3 1019 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑦 +o 𝐴) ∈ ω)
27 nnacl 6509 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (𝑦 +o 𝐵) ∈ ω)
28273adant2 1018 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑦 +o 𝐵) ∈ ω)
29 nnsucsssuc 6521 . . . . . . . . . 10 (((𝑦 +o 𝐴) ∈ ω ∧ (𝑦 +o 𝐵) ∈ ω) → ((𝑦 +o 𝐴) ⊆ (𝑦 +o 𝐵) ↔ suc (𝑦 +o 𝐴) ⊆ suc (𝑦 +o 𝐵)))
3026, 28, 29syl2anc 411 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝑦 +o 𝐴) ⊆ (𝑦 +o 𝐵) ↔ suc (𝑦 +o 𝐴) ⊆ suc (𝑦 +o 𝐵)))
31 nnasuc 6505 . . . . . . . . . . . . 13 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
32 peano2 4615 . . . . . . . . . . . . . 14 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
33 nnacom 6513 . . . . . . . . . . . . . 14 ((𝐴 ∈ ω ∧ suc 𝑦 ∈ ω) → (𝐴 +o suc 𝑦) = (suc 𝑦 +o 𝐴))
3432, 33sylan2 286 . . . . . . . . . . . . 13 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o suc 𝑦) = (suc 𝑦 +o 𝐴))
35 nnacom 6513 . . . . . . . . . . . . . 14 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o 𝑦) = (𝑦 +o 𝐴))
36 suceq 4423 . . . . . . . . . . . . . 14 ((𝐴 +o 𝑦) = (𝑦 +o 𝐴) → suc (𝐴 +o 𝑦) = suc (𝑦 +o 𝐴))
3735, 36syl 14 . . . . . . . . . . . . 13 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → suc (𝐴 +o 𝑦) = suc (𝑦 +o 𝐴))
3831, 34, 373eqtr3rd 2231 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → suc (𝑦 +o 𝐴) = (suc 𝑦 +o 𝐴))
3938ancoms 268 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω) → suc (𝑦 +o 𝐴) = (suc 𝑦 +o 𝐴))
40393adant3 1019 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → suc (𝑦 +o 𝐴) = (suc 𝑦 +o 𝐴))
41 nnasuc 6505 . . . . . . . . . . . . 13 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
42 nnacom 6513 . . . . . . . . . . . . . 14 ((𝐵 ∈ ω ∧ suc 𝑦 ∈ ω) → (𝐵 +o suc 𝑦) = (suc 𝑦 +o 𝐵))
4332, 42sylan2 286 . . . . . . . . . . . . 13 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +o suc 𝑦) = (suc 𝑦 +o 𝐵))
44 nnacom 6513 . . . . . . . . . . . . . 14 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +o 𝑦) = (𝑦 +o 𝐵))
45 suceq 4423 . . . . . . . . . . . . . 14 ((𝐵 +o 𝑦) = (𝑦 +o 𝐵) → suc (𝐵 +o 𝑦) = suc (𝑦 +o 𝐵))
4644, 45syl 14 . . . . . . . . . . . . 13 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → suc (𝐵 +o 𝑦) = suc (𝑦 +o 𝐵))
4741, 43, 463eqtr3rd 2231 . . . . . . . . . . . 12 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → suc (𝑦 +o 𝐵) = (suc 𝑦 +o 𝐵))
4847ancoms 268 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → suc (𝑦 +o 𝐵) = (suc 𝑦 +o 𝐵))
49483adant2 1018 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → suc (𝑦 +o 𝐵) = (suc 𝑦 +o 𝐵))
5040, 49sseq12d 3201 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc (𝑦 +o 𝐴) ⊆ suc (𝑦 +o 𝐵) ↔ (suc 𝑦 +o 𝐴) ⊆ (suc 𝑦 +o 𝐵)))
5130, 50bitrd 188 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝑦 +o 𝐴) ⊆ (𝑦 +o 𝐵) ↔ (suc 𝑦 +o 𝐴) ⊆ (suc 𝑦 +o 𝐵)))
5251bibi2d 232 . . . . . . 7 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵 ↔ (𝑦 +o 𝐴) ⊆ (𝑦 +o 𝐵)) ↔ (𝐴𝐵 ↔ (suc 𝑦 +o 𝐴) ⊆ (suc 𝑦 +o 𝐵))))
5352biimpd 144 . . . . . 6 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵 ↔ (𝑦 +o 𝐴) ⊆ (𝑦 +o 𝐵)) → (𝐴𝐵 ↔ (suc 𝑦 +o 𝐴) ⊆ (suc 𝑦 +o 𝐵))))
54533expib 1208 . . . . 5 (𝑦 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵 ↔ (𝑦 +o 𝐴) ⊆ (𝑦 +o 𝐵)) → (𝐴𝐵 ↔ (suc 𝑦 +o 𝐴) ⊆ (suc 𝑦 +o 𝐵)))))
559, 13, 17, 24, 54finds2 4621 . . . 4 (𝑥 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ (𝑥 +o 𝐴) ⊆ (𝑥 +o 𝐵))))
565, 55vtoclga 2818 . . 3 (𝐶 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵))))
5756impcom 125 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵)))
58573impa 1196 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2160  wss 3144  c0 3437  suc csuc 4386  ωcom 4610  (class class class)co 5900   +o coa 6442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4136  ax-sep 4139  ax-nul 4147  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-iinf 4608
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-tr 4120  df-id 4314  df-iord 4387  df-on 4389  df-suc 4392  df-iom 4611  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-ov 5903  df-oprab 5904  df-mpo 5905  df-1st 6169  df-2nd 6170  df-recs 6334  df-irdg 6399  df-oadd 6449
This theorem is referenced by:  nnacan  6541  nnawordi  6544
  Copyright terms: Public domain W3C validator