ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltmnqg GIF version

Theorem ltmnqg 7356
Description: Ordering property of multiplication for positive fractions. Proposition 9-2.6(iii) of [Gleason] p. 120. (Contributed by Jim Kingdon, 22-Sep-2019.)
Assertion
Ref Expression
ltmnqg ((𝐴Q𝐵Q𝐶Q) → (𝐴 <Q 𝐵 ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵)))

Proof of Theorem ltmnqg
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7303 . 2 Q = ((N × N) / ~Q )
2 breq1 3990 . . 3 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → ([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q𝐴 <Q [⟨𝑧, 𝑤⟩] ~Q ))
3 oveq2 5859 . . . 4 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑥, 𝑦⟩] ~Q ) = ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐴))
43breq1d 3997 . . 3 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → (([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑥, 𝑦⟩] ~Q ) <Q ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) ↔ ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q )))
52, 4bibi12d 234 . 2 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → (([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑥, 𝑦⟩] ~Q ) <Q ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q )) ↔ (𝐴 <Q [⟨𝑧, 𝑤⟩] ~Q ↔ ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ))))
6 breq2 3991 . . 3 ([⟨𝑧, 𝑤⟩] ~Q = 𝐵 → (𝐴 <Q [⟨𝑧, 𝑤⟩] ~Q𝐴 <Q 𝐵))
7 oveq2 5859 . . . 4 ([⟨𝑧, 𝑤⟩] ~Q = 𝐵 → ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) = ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐵))
87breq2d 3999 . . 3 ([⟨𝑧, 𝑤⟩] ~Q = 𝐵 → (([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) ↔ ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐵)))
96, 8bibi12d 234 . 2 ([⟨𝑧, 𝑤⟩] ~Q = 𝐵 → ((𝐴 <Q [⟨𝑧, 𝑤⟩] ~Q ↔ ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q )) ↔ (𝐴 <Q 𝐵 ↔ ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐵))))
10 oveq1 5858 . . . 4 ([⟨𝑣, 𝑢⟩] ~Q = 𝐶 → ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐴) = (𝐶 ·Q 𝐴))
11 oveq1 5858 . . . 4 ([⟨𝑣, 𝑢⟩] ~Q = 𝐶 → ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐵) = (𝐶 ·Q 𝐵))
1210, 11breq12d 4000 . . 3 ([⟨𝑣, 𝑢⟩] ~Q = 𝐶 → (([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐵) ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵)))
1312bibi2d 231 . 2 ([⟨𝑣, 𝑢⟩] ~Q = 𝐶 → ((𝐴 <Q 𝐵 ↔ ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐵)) ↔ (𝐴 <Q 𝐵 ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵))))
14 mulclpi 7283 . . . . . . . 8 ((𝑓N𝑔N) → (𝑓 ·N 𝑔) ∈ N)
1514adantl 275 . . . . . . 7 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) ∈ N)
16 simp1l 1016 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑥N)
17 simp2r 1019 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑤N)
1815, 16, 17caovcld 6004 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑥 ·N 𝑤) ∈ N)
19 simp1r 1017 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑦N)
20 simp2l 1018 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑧N)
2115, 19, 20caovcld 6004 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑦 ·N 𝑧) ∈ N)
22 mulclpi 7283 . . . . . . 7 ((𝑣N𝑢N) → (𝑣 ·N 𝑢) ∈ N)
23223ad2ant3 1015 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑣 ·N 𝑢) ∈ N)
24 ltmpig 7294 . . . . . 6 (((𝑥 ·N 𝑤) ∈ N ∧ (𝑦 ·N 𝑧) ∈ N ∧ (𝑣 ·N 𝑢) ∈ N) → ((𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧) ↔ ((𝑣 ·N 𝑢) ·N (𝑥 ·N 𝑤)) <N ((𝑣 ·N 𝑢) ·N (𝑦 ·N 𝑧))))
2518, 21, 23, 24syl3anc 1233 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧) ↔ ((𝑣 ·N 𝑢) ·N (𝑥 ·N 𝑤)) <N ((𝑣 ·N 𝑢) ·N (𝑦 ·N 𝑧))))
26 simp3l 1020 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑣N)
27 simp3r 1021 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑢N)
28 mulcompig 7286 . . . . . . . 8 ((𝑓N𝑔N) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
2928adantl 275 . . . . . . 7 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
30 mulasspig 7287 . . . . . . . 8 ((𝑓N𝑔NN) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
3130adantl 275 . . . . . . 7 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔NN)) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
3226, 16, 27, 29, 31, 17, 15caov4d 6035 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑣 ·N 𝑥) ·N (𝑢 ·N 𝑤)) = ((𝑣 ·N 𝑢) ·N (𝑥 ·N 𝑤)))
3327, 19, 26, 29, 31, 20, 15caov4d 6035 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑢 ·N 𝑦) ·N (𝑣 ·N 𝑧)) = ((𝑢 ·N 𝑣) ·N (𝑦 ·N 𝑧)))
34 mulcompig 7286 . . . . . . . . . 10 ((𝑢N𝑣N) → (𝑢 ·N 𝑣) = (𝑣 ·N 𝑢))
3534oveq1d 5866 . . . . . . . . 9 ((𝑢N𝑣N) → ((𝑢 ·N 𝑣) ·N (𝑦 ·N 𝑧)) = ((𝑣 ·N 𝑢) ·N (𝑦 ·N 𝑧)))
3635ancoms 266 . . . . . . . 8 ((𝑣N𝑢N) → ((𝑢 ·N 𝑣) ·N (𝑦 ·N 𝑧)) = ((𝑣 ·N 𝑢) ·N (𝑦 ·N 𝑧)))
37363ad2ant3 1015 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑢 ·N 𝑣) ·N (𝑦 ·N 𝑧)) = ((𝑣 ·N 𝑢) ·N (𝑦 ·N 𝑧)))
3833, 37eqtrd 2203 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑢 ·N 𝑦) ·N (𝑣 ·N 𝑧)) = ((𝑣 ·N 𝑢) ·N (𝑦 ·N 𝑧)))
3932, 38breq12d 4000 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (((𝑣 ·N 𝑥) ·N (𝑢 ·N 𝑤)) <N ((𝑢 ·N 𝑦) ·N (𝑣 ·N 𝑧)) ↔ ((𝑣 ·N 𝑢) ·N (𝑥 ·N 𝑤)) <N ((𝑣 ·N 𝑢) ·N (𝑦 ·N 𝑧))))
4025, 39bitr4d 190 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧) ↔ ((𝑣 ·N 𝑥) ·N (𝑢 ·N 𝑤)) <N ((𝑢 ·N 𝑦) ·N (𝑣 ·N 𝑧))))
41 ordpipqqs 7329 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧)))
42413adant3 1012 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧)))
4315, 26, 16caovcld 6004 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑣 ·N 𝑥) ∈ N)
4415, 27, 19caovcld 6004 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑢 ·N 𝑦) ∈ N)
4515, 26, 20caovcld 6004 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑣 ·N 𝑧) ∈ N)
4615, 27, 17caovcld 6004 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑢 ·N 𝑤) ∈ N)
47 ordpipqqs 7329 . . . . 5 ((((𝑣 ·N 𝑥) ∈ N ∧ (𝑢 ·N 𝑦) ∈ N) ∧ ((𝑣 ·N 𝑧) ∈ N ∧ (𝑢 ·N 𝑤) ∈ N)) → ([⟨(𝑣 ·N 𝑥), (𝑢 ·N 𝑦)⟩] ~Q <Q [⟨(𝑣 ·N 𝑧), (𝑢 ·N 𝑤)⟩] ~Q ↔ ((𝑣 ·N 𝑥) ·N (𝑢 ·N 𝑤)) <N ((𝑢 ·N 𝑦) ·N (𝑣 ·N 𝑧))))
4843, 44, 45, 46, 47syl22anc 1234 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨(𝑣 ·N 𝑥), (𝑢 ·N 𝑦)⟩] ~Q <Q [⟨(𝑣 ·N 𝑧), (𝑢 ·N 𝑤)⟩] ~Q ↔ ((𝑣 ·N 𝑥) ·N (𝑢 ·N 𝑤)) <N ((𝑢 ·N 𝑦) ·N (𝑣 ·N 𝑧))))
4940, 42, 483bitr4d 219 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ [⟨(𝑣 ·N 𝑥), (𝑢 ·N 𝑦)⟩] ~Q <Q [⟨(𝑣 ·N 𝑧), (𝑢 ·N 𝑤)⟩] ~Q ))
50 mulpipqqs 7328 . . . . . 6 (((𝑣N𝑢N) ∧ (𝑥N𝑦N)) → ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑥, 𝑦⟩] ~Q ) = [⟨(𝑣 ·N 𝑥), (𝑢 ·N 𝑦)⟩] ~Q )
5150ancoms 266 . . . . 5 (((𝑥N𝑦N) ∧ (𝑣N𝑢N)) → ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑥, 𝑦⟩] ~Q ) = [⟨(𝑣 ·N 𝑥), (𝑢 ·N 𝑦)⟩] ~Q )
52513adant2 1011 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑥, 𝑦⟩] ~Q ) = [⟨(𝑣 ·N 𝑥), (𝑢 ·N 𝑦)⟩] ~Q )
53 mulpipqqs 7328 . . . . . 6 (((𝑣N𝑢N) ∧ (𝑧N𝑤N)) → ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) = [⟨(𝑣 ·N 𝑧), (𝑢 ·N 𝑤)⟩] ~Q )
5453ancoms 266 . . . . 5 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) = [⟨(𝑣 ·N 𝑧), (𝑢 ·N 𝑤)⟩] ~Q )
55543adant1 1010 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) = [⟨(𝑣 ·N 𝑧), (𝑢 ·N 𝑤)⟩] ~Q )
5652, 55breq12d 4000 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑥, 𝑦⟩] ~Q ) <Q ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) ↔ [⟨(𝑣 ·N 𝑥), (𝑢 ·N 𝑦)⟩] ~Q <Q [⟨(𝑣 ·N 𝑧), (𝑢 ·N 𝑤)⟩] ~Q ))
5749, 56bitr4d 190 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑥, 𝑦⟩] ~Q ) <Q ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q )))
581, 5, 9, 13, 573ecoptocl 6600 1 ((𝐴Q𝐵Q𝐶Q) → (𝐴 <Q 𝐵 ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  cop 3584   class class class wbr 3987  (class class class)co 5851  [cec 6509  Ncnpi 7227   ·N cmi 7229   <N clti 7230   ~Q ceq 7234  Qcnq 7235   ·Q cmq 7238   <Q cltq 7240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-eprel 4272  df-id 4276  df-iord 4349  df-on 4351  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-irdg 6347  df-oadd 6397  df-omul 6398  df-er 6511  df-ec 6513  df-qs 6517  df-ni 7259  df-mi 7261  df-lti 7262  df-mpq 7300  df-enq 7302  df-nqqs 7303  df-mqqs 7305  df-ltnqqs 7308
This theorem is referenced by:  ltmnqi  7358  lt2mulnq  7360  ltaddnq  7362  prarloclemarch  7373  prarloclemarch2  7374  ltrnqg  7375  prarloclemlt  7448  addnqprllem  7482  addnqprulem  7483  appdivnq  7518  mulnqprl  7523  mulnqpru  7524  mullocprlem  7525  mulclpr  7527  distrlem4prl  7539  distrlem4pru  7540  1idprl  7545  1idpru  7546  recexprlem1ssl  7588  recexprlem1ssu  7589
  Copyright terms: Public domain W3C validator