Step | Hyp | Ref
| Expression |
1 | | df-nqqs 7310 |
. 2
⊢
Q = ((N × N) /
~Q ) |
2 | | breq1 3992 |
. . 3
⊢
([〈𝑥, 𝑦〉]
~Q = 𝐴 → ([〈𝑥, 𝑦〉] ~Q
<Q [〈𝑧, 𝑤〉] ~Q ↔
𝐴
<Q [〈𝑧, 𝑤〉] ~Q
)) |
3 | | oveq2 5861 |
. . . 4
⊢
([〈𝑥, 𝑦〉]
~Q = 𝐴 → ([〈𝑣, 𝑢〉] ~Q
·Q [〈𝑥, 𝑦〉] ~Q ) =
([〈𝑣, 𝑢〉]
~Q ·Q 𝐴)) |
4 | 3 | breq1d 3999 |
. . 3
⊢
([〈𝑥, 𝑦〉]
~Q = 𝐴 → (([〈𝑣, 𝑢〉] ~Q
·Q [〈𝑥, 𝑦〉] ~Q )
<Q ([〈𝑣, 𝑢〉] ~Q
·Q [〈𝑧, 𝑤〉] ~Q ) ↔
([〈𝑣, 𝑢〉]
~Q ·Q 𝐴) <Q
([〈𝑣, 𝑢〉]
~Q ·Q [〈𝑧, 𝑤〉] ~Q
))) |
5 | 2, 4 | bibi12d 234 |
. 2
⊢
([〈𝑥, 𝑦〉]
~Q = 𝐴 → (([〈𝑥, 𝑦〉] ~Q
<Q [〈𝑧, 𝑤〉] ~Q ↔
([〈𝑣, 𝑢〉]
~Q ·Q [〈𝑥, 𝑦〉] ~Q )
<Q ([〈𝑣, 𝑢〉] ~Q
·Q [〈𝑧, 𝑤〉] ~Q )) ↔
(𝐴
<Q [〈𝑧, 𝑤〉] ~Q ↔
([〈𝑣, 𝑢〉]
~Q ·Q 𝐴) <Q
([〈𝑣, 𝑢〉]
~Q ·Q [〈𝑧, 𝑤〉] ~Q
)))) |
6 | | breq2 3993 |
. . 3
⊢
([〈𝑧, 𝑤〉]
~Q = 𝐵 → (𝐴 <Q [〈𝑧, 𝑤〉] ~Q ↔
𝐴
<Q 𝐵)) |
7 | | oveq2 5861 |
. . . 4
⊢
([〈𝑧, 𝑤〉]
~Q = 𝐵 → ([〈𝑣, 𝑢〉] ~Q
·Q [〈𝑧, 𝑤〉] ~Q ) =
([〈𝑣, 𝑢〉]
~Q ·Q 𝐵)) |
8 | 7 | breq2d 4001 |
. . 3
⊢
([〈𝑧, 𝑤〉]
~Q = 𝐵 → (([〈𝑣, 𝑢〉] ~Q
·Q 𝐴) <Q
([〈𝑣, 𝑢〉]
~Q ·Q [〈𝑧, 𝑤〉] ~Q ) ↔
([〈𝑣, 𝑢〉]
~Q ·Q 𝐴) <Q
([〈𝑣, 𝑢〉]
~Q ·Q 𝐵))) |
9 | 6, 8 | bibi12d 234 |
. 2
⊢
([〈𝑧, 𝑤〉]
~Q = 𝐵 → ((𝐴 <Q [〈𝑧, 𝑤〉] ~Q ↔
([〈𝑣, 𝑢〉]
~Q ·Q 𝐴) <Q
([〈𝑣, 𝑢〉]
~Q ·Q [〈𝑧, 𝑤〉] ~Q )) ↔
(𝐴
<Q 𝐵 ↔ ([〈𝑣, 𝑢〉] ~Q
·Q 𝐴) <Q
([〈𝑣, 𝑢〉]
~Q ·Q 𝐵)))) |
10 | | oveq1 5860 |
. . . 4
⊢
([〈𝑣, 𝑢〉]
~Q = 𝐶 → ([〈𝑣, 𝑢〉] ~Q
·Q 𝐴) = (𝐶 ·Q 𝐴)) |
11 | | oveq1 5860 |
. . . 4
⊢
([〈𝑣, 𝑢〉]
~Q = 𝐶 → ([〈𝑣, 𝑢〉] ~Q
·Q 𝐵) = (𝐶 ·Q 𝐵)) |
12 | 10, 11 | breq12d 4002 |
. . 3
⊢
([〈𝑣, 𝑢〉]
~Q = 𝐶 → (([〈𝑣, 𝑢〉] ~Q
·Q 𝐴) <Q
([〈𝑣, 𝑢〉]
~Q ·Q 𝐵) ↔ (𝐶 ·Q 𝐴) <Q
(𝐶
·Q 𝐵))) |
13 | 12 | bibi2d 231 |
. 2
⊢
([〈𝑣, 𝑢〉]
~Q = 𝐶 → ((𝐴 <Q 𝐵 ↔ ([〈𝑣, 𝑢〉] ~Q
·Q 𝐴) <Q
([〈𝑣, 𝑢〉]
~Q ·Q 𝐵)) ↔ (𝐴 <Q 𝐵 ↔ (𝐶 ·Q 𝐴) <Q
(𝐶
·Q 𝐵)))) |
14 | | mulclpi 7290 |
. . . . . . . 8
⊢ ((𝑓 ∈ N ∧
𝑔 ∈ N)
→ (𝑓
·N 𝑔) ∈ N) |
15 | 14 | adantl 275 |
. . . . . . 7
⊢ ((((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) ∧
(𝑓 ∈ N
∧ 𝑔 ∈
N)) → (𝑓
·N 𝑔) ∈ N) |
16 | | simp1l 1016 |
. . . . . . 7
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
𝑥 ∈
N) |
17 | | simp2r 1019 |
. . . . . . 7
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
𝑤 ∈
N) |
18 | 15, 16, 17 | caovcld 6006 |
. . . . . 6
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
(𝑥
·N 𝑤) ∈ N) |
19 | | simp1r 1017 |
. . . . . . 7
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
𝑦 ∈
N) |
20 | | simp2l 1018 |
. . . . . . 7
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
𝑧 ∈
N) |
21 | 15, 19, 20 | caovcld 6006 |
. . . . . 6
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
(𝑦
·N 𝑧) ∈ N) |
22 | | mulclpi 7290 |
. . . . . . 7
⊢ ((𝑣 ∈ N ∧
𝑢 ∈ N)
→ (𝑣
·N 𝑢) ∈ N) |
23 | 22 | 3ad2ant3 1015 |
. . . . . 6
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
(𝑣
·N 𝑢) ∈ N) |
24 | | ltmpig 7301 |
. . . . . 6
⊢ (((𝑥
·N 𝑤) ∈ N ∧ (𝑦
·N 𝑧) ∈ N ∧ (𝑣
·N 𝑢) ∈ N) → ((𝑥
·N 𝑤) <N (𝑦
·N 𝑧) ↔ ((𝑣 ·N 𝑢)
·N (𝑥 ·N 𝑤))
<N ((𝑣 ·N 𝑢)
·N (𝑦 ·N 𝑧)))) |
25 | 18, 21, 23, 24 | syl3anc 1233 |
. . . . 5
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
((𝑥
·N 𝑤) <N (𝑦
·N 𝑧) ↔ ((𝑣 ·N 𝑢)
·N (𝑥 ·N 𝑤))
<N ((𝑣 ·N 𝑢)
·N (𝑦 ·N 𝑧)))) |
26 | | simp3l 1020 |
. . . . . . 7
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
𝑣 ∈
N) |
27 | | simp3r 1021 |
. . . . . . 7
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
𝑢 ∈
N) |
28 | | mulcompig 7293 |
. . . . . . . 8
⊢ ((𝑓 ∈ N ∧
𝑔 ∈ N)
→ (𝑓
·N 𝑔) = (𝑔 ·N 𝑓)) |
29 | 28 | adantl 275 |
. . . . . . 7
⊢ ((((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) ∧
(𝑓 ∈ N
∧ 𝑔 ∈
N)) → (𝑓
·N 𝑔) = (𝑔 ·N 𝑓)) |
30 | | mulasspig 7294 |
. . . . . . . 8
⊢ ((𝑓 ∈ N ∧
𝑔 ∈ N
∧ ℎ ∈
N) → ((𝑓
·N 𝑔) ·N ℎ) = (𝑓 ·N (𝑔
·N ℎ))) |
31 | 30 | adantl 275 |
. . . . . . 7
⊢ ((((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) ∧
(𝑓 ∈ N
∧ 𝑔 ∈
N ∧ ℎ
∈ N)) → ((𝑓 ·N 𝑔)
·N ℎ) = (𝑓 ·N (𝑔
·N ℎ))) |
32 | 26, 16, 27, 29, 31, 17, 15 | caov4d 6037 |
. . . . . 6
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
((𝑣
·N 𝑥) ·N (𝑢
·N 𝑤)) = ((𝑣 ·N 𝑢)
·N (𝑥 ·N 𝑤))) |
33 | 27, 19, 26, 29, 31, 20, 15 | caov4d 6037 |
. . . . . . 7
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
((𝑢
·N 𝑦) ·N (𝑣
·N 𝑧)) = ((𝑢 ·N 𝑣)
·N (𝑦 ·N 𝑧))) |
34 | | mulcompig 7293 |
. . . . . . . . . 10
⊢ ((𝑢 ∈ N ∧
𝑣 ∈ N)
→ (𝑢
·N 𝑣) = (𝑣 ·N 𝑢)) |
35 | 34 | oveq1d 5868 |
. . . . . . . . 9
⊢ ((𝑢 ∈ N ∧
𝑣 ∈ N)
→ ((𝑢
·N 𝑣) ·N (𝑦
·N 𝑧)) = ((𝑣 ·N 𝑢)
·N (𝑦 ·N 𝑧))) |
36 | 35 | ancoms 266 |
. . . . . . . 8
⊢ ((𝑣 ∈ N ∧
𝑢 ∈ N)
→ ((𝑢
·N 𝑣) ·N (𝑦
·N 𝑧)) = ((𝑣 ·N 𝑢)
·N (𝑦 ·N 𝑧))) |
37 | 36 | 3ad2ant3 1015 |
. . . . . . 7
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
((𝑢
·N 𝑣) ·N (𝑦
·N 𝑧)) = ((𝑣 ·N 𝑢)
·N (𝑦 ·N 𝑧))) |
38 | 33, 37 | eqtrd 2203 |
. . . . . 6
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
((𝑢
·N 𝑦) ·N (𝑣
·N 𝑧)) = ((𝑣 ·N 𝑢)
·N (𝑦 ·N 𝑧))) |
39 | 32, 38 | breq12d 4002 |
. . . . 5
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
(((𝑣
·N 𝑥) ·N (𝑢
·N 𝑤)) <N ((𝑢
·N 𝑦) ·N (𝑣
·N 𝑧)) ↔ ((𝑣 ·N 𝑢)
·N (𝑥 ·N 𝑤))
<N ((𝑣 ·N 𝑢)
·N (𝑦 ·N 𝑧)))) |
40 | 25, 39 | bitr4d 190 |
. . . 4
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
((𝑥
·N 𝑤) <N (𝑦
·N 𝑧) ↔ ((𝑣 ·N 𝑥)
·N (𝑢 ·N 𝑤))
<N ((𝑢 ·N 𝑦)
·N (𝑣 ·N 𝑧)))) |
41 | | ordpipqqs 7336 |
. . . . 5
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N)) → ([〈𝑥, 𝑦〉] ~Q
<Q [〈𝑧, 𝑤〉] ~Q ↔
(𝑥
·N 𝑤) <N (𝑦
·N 𝑧))) |
42 | 41 | 3adant3 1012 |
. . . 4
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
([〈𝑥, 𝑦〉]
~Q <Q [〈𝑧, 𝑤〉] ~Q ↔
(𝑥
·N 𝑤) <N (𝑦
·N 𝑧))) |
43 | 15, 26, 16 | caovcld 6006 |
. . . . 5
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
(𝑣
·N 𝑥) ∈ N) |
44 | 15, 27, 19 | caovcld 6006 |
. . . . 5
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
(𝑢
·N 𝑦) ∈ N) |
45 | 15, 26, 20 | caovcld 6006 |
. . . . 5
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
(𝑣
·N 𝑧) ∈ N) |
46 | 15, 27, 17 | caovcld 6006 |
. . . . 5
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
(𝑢
·N 𝑤) ∈ N) |
47 | | ordpipqqs 7336 |
. . . . 5
⊢ ((((𝑣
·N 𝑥) ∈ N ∧ (𝑢
·N 𝑦) ∈ N) ∧ ((𝑣
·N 𝑧) ∈ N ∧ (𝑢
·N 𝑤) ∈ N)) →
([〈(𝑣
·N 𝑥), (𝑢 ·N 𝑦)〉]
~Q <Q [〈(𝑣
·N 𝑧), (𝑢 ·N 𝑤)〉]
~Q ↔ ((𝑣 ·N 𝑥)
·N (𝑢 ·N 𝑤))
<N ((𝑢 ·N 𝑦)
·N (𝑣 ·N 𝑧)))) |
48 | 43, 44, 45, 46, 47 | syl22anc 1234 |
. . . 4
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
([〈(𝑣
·N 𝑥), (𝑢 ·N 𝑦)〉]
~Q <Q [〈(𝑣
·N 𝑧), (𝑢 ·N 𝑤)〉]
~Q ↔ ((𝑣 ·N 𝑥)
·N (𝑢 ·N 𝑤))
<N ((𝑢 ·N 𝑦)
·N (𝑣 ·N 𝑧)))) |
49 | 40, 42, 48 | 3bitr4d 219 |
. . 3
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
([〈𝑥, 𝑦〉]
~Q <Q [〈𝑧, 𝑤〉] ~Q ↔
[〈(𝑣
·N 𝑥), (𝑢 ·N 𝑦)〉]
~Q <Q [〈(𝑣
·N 𝑧), (𝑢 ·N 𝑤)〉]
~Q )) |
50 | | mulpipqqs 7335 |
. . . . . 6
⊢ (((𝑣 ∈ N ∧
𝑢 ∈ N)
∧ (𝑥 ∈
N ∧ 𝑦
∈ N)) → ([〈𝑣, 𝑢〉] ~Q
·Q [〈𝑥, 𝑦〉] ~Q ) =
[〈(𝑣
·N 𝑥), (𝑢 ·N 𝑦)〉]
~Q ) |
51 | 50 | ancoms 266 |
. . . . 5
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) → ([〈𝑣, 𝑢〉] ~Q
·Q [〈𝑥, 𝑦〉] ~Q ) =
[〈(𝑣
·N 𝑥), (𝑢 ·N 𝑦)〉]
~Q ) |
52 | 51 | 3adant2 1011 |
. . . 4
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
([〈𝑣, 𝑢〉]
~Q ·Q [〈𝑥, 𝑦〉] ~Q ) =
[〈(𝑣
·N 𝑥), (𝑢 ·N 𝑦)〉]
~Q ) |
53 | | mulpipqqs 7335 |
. . . . . 6
⊢ (((𝑣 ∈ N ∧
𝑢 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N)) → ([〈𝑣, 𝑢〉] ~Q
·Q [〈𝑧, 𝑤〉] ~Q ) =
[〈(𝑣
·N 𝑧), (𝑢 ·N 𝑤)〉]
~Q ) |
54 | 53 | ancoms 266 |
. . . . 5
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑣 ∈
N ∧ 𝑢
∈ N)) → ([〈𝑣, 𝑢〉] ~Q
·Q [〈𝑧, 𝑤〉] ~Q ) =
[〈(𝑣
·N 𝑧), (𝑢 ·N 𝑤)〉]
~Q ) |
55 | 54 | 3adant1 1010 |
. . . 4
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
([〈𝑣, 𝑢〉]
~Q ·Q [〈𝑧, 𝑤〉] ~Q ) =
[〈(𝑣
·N 𝑧), (𝑢 ·N 𝑤)〉]
~Q ) |
56 | 52, 55 | breq12d 4002 |
. . 3
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
(([〈𝑣, 𝑢〉]
~Q ·Q [〈𝑥, 𝑦〉] ~Q )
<Q ([〈𝑣, 𝑢〉] ~Q
·Q [〈𝑧, 𝑤〉] ~Q ) ↔
[〈(𝑣
·N 𝑥), (𝑢 ·N 𝑦)〉]
~Q <Q [〈(𝑣
·N 𝑧), (𝑢 ·N 𝑤)〉]
~Q )) |
57 | 49, 56 | bitr4d 190 |
. 2
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N) ∧ (𝑣 ∈ N ∧ 𝑢 ∈ N)) →
([〈𝑥, 𝑦〉]
~Q <Q [〈𝑧, 𝑤〉] ~Q ↔
([〈𝑣, 𝑢〉]
~Q ·Q [〈𝑥, 𝑦〉] ~Q )
<Q ([〈𝑣, 𝑢〉] ~Q
·Q [〈𝑧, 𝑤〉] ~Q
))) |
58 | 1, 5, 9, 13, 57 | 3ecoptocl 6602 |
1
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q
∧ 𝐶 ∈
Q) → (𝐴
<Q 𝐵 ↔ (𝐶 ·Q 𝐴) <Q
(𝐶
·Q 𝐵))) |