ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltmnqg GIF version

Theorem ltmnqg 7342
Description: Ordering property of multiplication for positive fractions. Proposition 9-2.6(iii) of [Gleason] p. 120. (Contributed by Jim Kingdon, 22-Sep-2019.)
Assertion
Ref Expression
ltmnqg ((𝐴Q𝐵Q𝐶Q) → (𝐴 <Q 𝐵 ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵)))

Proof of Theorem ltmnqg
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7289 . 2 Q = ((N × N) / ~Q )
2 breq1 3985 . . 3 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → ([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q𝐴 <Q [⟨𝑧, 𝑤⟩] ~Q ))
3 oveq2 5850 . . . 4 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑥, 𝑦⟩] ~Q ) = ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐴))
43breq1d 3992 . . 3 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → (([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑥, 𝑦⟩] ~Q ) <Q ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) ↔ ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q )))
52, 4bibi12d 234 . 2 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → (([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑥, 𝑦⟩] ~Q ) <Q ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q )) ↔ (𝐴 <Q [⟨𝑧, 𝑤⟩] ~Q ↔ ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ))))
6 breq2 3986 . . 3 ([⟨𝑧, 𝑤⟩] ~Q = 𝐵 → (𝐴 <Q [⟨𝑧, 𝑤⟩] ~Q𝐴 <Q 𝐵))
7 oveq2 5850 . . . 4 ([⟨𝑧, 𝑤⟩] ~Q = 𝐵 → ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) = ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐵))
87breq2d 3994 . . 3 ([⟨𝑧, 𝑤⟩] ~Q = 𝐵 → (([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) ↔ ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐵)))
96, 8bibi12d 234 . 2 ([⟨𝑧, 𝑤⟩] ~Q = 𝐵 → ((𝐴 <Q [⟨𝑧, 𝑤⟩] ~Q ↔ ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q )) ↔ (𝐴 <Q 𝐵 ↔ ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐵))))
10 oveq1 5849 . . . 4 ([⟨𝑣, 𝑢⟩] ~Q = 𝐶 → ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐴) = (𝐶 ·Q 𝐴))
11 oveq1 5849 . . . 4 ([⟨𝑣, 𝑢⟩] ~Q = 𝐶 → ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐵) = (𝐶 ·Q 𝐵))
1210, 11breq12d 3995 . . 3 ([⟨𝑣, 𝑢⟩] ~Q = 𝐶 → (([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐵) ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵)))
1312bibi2d 231 . 2 ([⟨𝑣, 𝑢⟩] ~Q = 𝐶 → ((𝐴 <Q 𝐵 ↔ ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐵)) ↔ (𝐴 <Q 𝐵 ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵))))
14 mulclpi 7269 . . . . . . . 8 ((𝑓N𝑔N) → (𝑓 ·N 𝑔) ∈ N)
1514adantl 275 . . . . . . 7 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) ∈ N)
16 simp1l 1011 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑥N)
17 simp2r 1014 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑤N)
1815, 16, 17caovcld 5995 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑥 ·N 𝑤) ∈ N)
19 simp1r 1012 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑦N)
20 simp2l 1013 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑧N)
2115, 19, 20caovcld 5995 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑦 ·N 𝑧) ∈ N)
22 mulclpi 7269 . . . . . . 7 ((𝑣N𝑢N) → (𝑣 ·N 𝑢) ∈ N)
23223ad2ant3 1010 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑣 ·N 𝑢) ∈ N)
24 ltmpig 7280 . . . . . 6 (((𝑥 ·N 𝑤) ∈ N ∧ (𝑦 ·N 𝑧) ∈ N ∧ (𝑣 ·N 𝑢) ∈ N) → ((𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧) ↔ ((𝑣 ·N 𝑢) ·N (𝑥 ·N 𝑤)) <N ((𝑣 ·N 𝑢) ·N (𝑦 ·N 𝑧))))
2518, 21, 23, 24syl3anc 1228 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧) ↔ ((𝑣 ·N 𝑢) ·N (𝑥 ·N 𝑤)) <N ((𝑣 ·N 𝑢) ·N (𝑦 ·N 𝑧))))
26 simp3l 1015 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑣N)
27 simp3r 1016 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑢N)
28 mulcompig 7272 . . . . . . . 8 ((𝑓N𝑔N) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
2928adantl 275 . . . . . . 7 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
30 mulasspig 7273 . . . . . . . 8 ((𝑓N𝑔NN) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
3130adantl 275 . . . . . . 7 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔NN)) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
3226, 16, 27, 29, 31, 17, 15caov4d 6026 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑣 ·N 𝑥) ·N (𝑢 ·N 𝑤)) = ((𝑣 ·N 𝑢) ·N (𝑥 ·N 𝑤)))
3327, 19, 26, 29, 31, 20, 15caov4d 6026 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑢 ·N 𝑦) ·N (𝑣 ·N 𝑧)) = ((𝑢 ·N 𝑣) ·N (𝑦 ·N 𝑧)))
34 mulcompig 7272 . . . . . . . . . 10 ((𝑢N𝑣N) → (𝑢 ·N 𝑣) = (𝑣 ·N 𝑢))
3534oveq1d 5857 . . . . . . . . 9 ((𝑢N𝑣N) → ((𝑢 ·N 𝑣) ·N (𝑦 ·N 𝑧)) = ((𝑣 ·N 𝑢) ·N (𝑦 ·N 𝑧)))
3635ancoms 266 . . . . . . . 8 ((𝑣N𝑢N) → ((𝑢 ·N 𝑣) ·N (𝑦 ·N 𝑧)) = ((𝑣 ·N 𝑢) ·N (𝑦 ·N 𝑧)))
37363ad2ant3 1010 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑢 ·N 𝑣) ·N (𝑦 ·N 𝑧)) = ((𝑣 ·N 𝑢) ·N (𝑦 ·N 𝑧)))
3833, 37eqtrd 2198 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑢 ·N 𝑦) ·N (𝑣 ·N 𝑧)) = ((𝑣 ·N 𝑢) ·N (𝑦 ·N 𝑧)))
3932, 38breq12d 3995 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (((𝑣 ·N 𝑥) ·N (𝑢 ·N 𝑤)) <N ((𝑢 ·N 𝑦) ·N (𝑣 ·N 𝑧)) ↔ ((𝑣 ·N 𝑢) ·N (𝑥 ·N 𝑤)) <N ((𝑣 ·N 𝑢) ·N (𝑦 ·N 𝑧))))
4025, 39bitr4d 190 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧) ↔ ((𝑣 ·N 𝑥) ·N (𝑢 ·N 𝑤)) <N ((𝑢 ·N 𝑦) ·N (𝑣 ·N 𝑧))))
41 ordpipqqs 7315 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧)))
42413adant3 1007 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧)))
4315, 26, 16caovcld 5995 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑣 ·N 𝑥) ∈ N)
4415, 27, 19caovcld 5995 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑢 ·N 𝑦) ∈ N)
4515, 26, 20caovcld 5995 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑣 ·N 𝑧) ∈ N)
4615, 27, 17caovcld 5995 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑢 ·N 𝑤) ∈ N)
47 ordpipqqs 7315 . . . . 5 ((((𝑣 ·N 𝑥) ∈ N ∧ (𝑢 ·N 𝑦) ∈ N) ∧ ((𝑣 ·N 𝑧) ∈ N ∧ (𝑢 ·N 𝑤) ∈ N)) → ([⟨(𝑣 ·N 𝑥), (𝑢 ·N 𝑦)⟩] ~Q <Q [⟨(𝑣 ·N 𝑧), (𝑢 ·N 𝑤)⟩] ~Q ↔ ((𝑣 ·N 𝑥) ·N (𝑢 ·N 𝑤)) <N ((𝑢 ·N 𝑦) ·N (𝑣 ·N 𝑧))))
4843, 44, 45, 46, 47syl22anc 1229 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨(𝑣 ·N 𝑥), (𝑢 ·N 𝑦)⟩] ~Q <Q [⟨(𝑣 ·N 𝑧), (𝑢 ·N 𝑤)⟩] ~Q ↔ ((𝑣 ·N 𝑥) ·N (𝑢 ·N 𝑤)) <N ((𝑢 ·N 𝑦) ·N (𝑣 ·N 𝑧))))
4940, 42, 483bitr4d 219 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ [⟨(𝑣 ·N 𝑥), (𝑢 ·N 𝑦)⟩] ~Q <Q [⟨(𝑣 ·N 𝑧), (𝑢 ·N 𝑤)⟩] ~Q ))
50 mulpipqqs 7314 . . . . . 6 (((𝑣N𝑢N) ∧ (𝑥N𝑦N)) → ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑥, 𝑦⟩] ~Q ) = [⟨(𝑣 ·N 𝑥), (𝑢 ·N 𝑦)⟩] ~Q )
5150ancoms 266 . . . . 5 (((𝑥N𝑦N) ∧ (𝑣N𝑢N)) → ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑥, 𝑦⟩] ~Q ) = [⟨(𝑣 ·N 𝑥), (𝑢 ·N 𝑦)⟩] ~Q )
52513adant2 1006 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑥, 𝑦⟩] ~Q ) = [⟨(𝑣 ·N 𝑥), (𝑢 ·N 𝑦)⟩] ~Q )
53 mulpipqqs 7314 . . . . . 6 (((𝑣N𝑢N) ∧ (𝑧N𝑤N)) → ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) = [⟨(𝑣 ·N 𝑧), (𝑢 ·N 𝑤)⟩] ~Q )
5453ancoms 266 . . . . 5 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) = [⟨(𝑣 ·N 𝑧), (𝑢 ·N 𝑤)⟩] ~Q )
55543adant1 1005 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) = [⟨(𝑣 ·N 𝑧), (𝑢 ·N 𝑤)⟩] ~Q )
5652, 55breq12d 3995 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑥, 𝑦⟩] ~Q ) <Q ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) ↔ [⟨(𝑣 ·N 𝑥), (𝑢 ·N 𝑦)⟩] ~Q <Q [⟨(𝑣 ·N 𝑧), (𝑢 ·N 𝑤)⟩] ~Q ))
5749, 56bitr4d 190 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑥, 𝑦⟩] ~Q ) <Q ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q )))
581, 5, 9, 13, 573ecoptocl 6590 1 ((𝐴Q𝐵Q𝐶Q) → (𝐴 <Q 𝐵 ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wcel 2136  cop 3579   class class class wbr 3982  (class class class)co 5842  [cec 6499  Ncnpi 7213   ·N cmi 7215   <N clti 7216   ~Q ceq 7220  Qcnq 7221   ·Q cmq 7224   <Q cltq 7226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-mi 7247  df-lti 7248  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-mqqs 7291  df-ltnqqs 7294
This theorem is referenced by:  ltmnqi  7344  lt2mulnq  7346  ltaddnq  7348  prarloclemarch  7359  prarloclemarch2  7360  ltrnqg  7361  prarloclemlt  7434  addnqprllem  7468  addnqprulem  7469  appdivnq  7504  mulnqprl  7509  mulnqpru  7510  mullocprlem  7511  mulclpr  7513  distrlem4prl  7525  distrlem4pru  7526  1idprl  7531  1idpru  7532  recexprlem1ssl  7574  recexprlem1ssu  7575
  Copyright terms: Public domain W3C validator