ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgsubm GIF version

Theorem subrgsubm 13361
Description: A subring is a submonoid of the multiplicative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypothesis
Ref Expression
subrgsubm.1 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
subrgsubm (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubMnd‘𝑀))

Proof of Theorem subrgsubm
StepHypRef Expression
1 eqid 2177 . . 3 (Base‘𝑅) = (Base‘𝑅)
21subrgss 13349 . 2 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
3 eqid 2177 . . 3 (1r𝑅) = (1r𝑅)
43subrg1cl 13356 . 2 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) ∈ 𝐴)
5 subrgrcl 13353 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
6 eqid 2177 . . . . 5 (𝑅s 𝐴) = (𝑅s 𝐴)
7 subrgsubm.1 . . . . 5 𝑀 = (mulGrp‘𝑅)
86, 7mgpress 13147 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴 ∈ (SubRing‘𝑅)) → (𝑀s 𝐴) = (mulGrp‘(𝑅s 𝐴)))
95, 8mpancom 422 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (𝑀s 𝐴) = (mulGrp‘(𝑅s 𝐴)))
106subrgring 13351 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → (𝑅s 𝐴) ∈ Ring)
11 eqid 2177 . . . . 5 (mulGrp‘(𝑅s 𝐴)) = (mulGrp‘(𝑅s 𝐴))
1211ringmgp 13191 . . . 4 ((𝑅s 𝐴) ∈ Ring → (mulGrp‘(𝑅s 𝐴)) ∈ Mnd)
1310, 12syl 14 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (mulGrp‘(𝑅s 𝐴)) ∈ Mnd)
149, 13eqeltrd 2254 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝑀s 𝐴) ∈ Mnd)
157ringmgp 13191 . . . . 5 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
16 eqid 2177 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
17 eqid 2177 . . . . . 6 (0g𝑀) = (0g𝑀)
18 eqid 2177 . . . . . 6 (𝑀s 𝐴) = (𝑀s 𝐴)
1916, 17, 18issubm2 12870 . . . . 5 (𝑀 ∈ Mnd → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd)))
2015, 19syl 14 . . . 4 (𝑅 ∈ Ring → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd)))
215, 20syl 14 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd)))
227, 1mgpbasg 13142 . . . . . . 7 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑀))
2322sseq2d 3187 . . . . . 6 (𝑅 ∈ Ring → (𝐴 ⊆ (Base‘𝑅) ↔ 𝐴 ⊆ (Base‘𝑀)))
247, 3ringidvalg 13150 . . . . . . 7 (𝑅 ∈ Ring → (1r𝑅) = (0g𝑀))
2524eleq1d 2246 . . . . . 6 (𝑅 ∈ Ring → ((1r𝑅) ∈ 𝐴 ↔ (0g𝑀) ∈ 𝐴))
2623, 253anbi12d 1313 . . . . 5 (𝑅 ∈ Ring → ((𝐴 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd)))
2726bibi2d 232 . . . 4 (𝑅 ∈ Ring → ((𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd)) ↔ (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd))))
285, 27syl 14 . . 3 (𝐴 ∈ (SubRing‘𝑅) → ((𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd)) ↔ (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd))))
2921, 28mpbird 167 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd)))
302, 4, 14, 29mpbir3and 1180 1 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubMnd‘𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 978   = wceq 1353  wcel 2148  wss 3131  cfv 5218  (class class class)co 5878  Basecbs 12465  s cress 12466  0gc0g 12711  Mndcmnd 12823  SubMndcsubmnd 12856  mulGrpcmgp 13136  1rcur 13148  Ringcrg 13185  SubRingcsubrg 13344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-addcom 7914  ax-addass 7916  ax-i2m1 7919  ax-0lt1 7920  ax-0id 7922  ax-rnegex 7923  ax-pre-ltirr 7926  ax-pre-lttrn 7928  ax-pre-ltadd 7930
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-pnf 7997  df-mnf 7998  df-ltxr 8000  df-inn 8923  df-2 8981  df-3 8982  df-ndx 12468  df-slot 12469  df-base 12471  df-sets 12472  df-iress 12473  df-plusg 12552  df-mulr 12553  df-0g 12713  df-mgm 12781  df-sgrp 12814  df-mnd 12824  df-submnd 12858  df-mgp 13137  df-ur 13149  df-ring 13187  df-subrg 13346
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator