| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subrgsubm | GIF version | ||
| Description: A subring is a submonoid of the multiplicative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| Ref | Expression |
|---|---|
| subrgsubm.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
| Ref | Expression |
|---|---|
| subrgsubm | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubMnd‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2204 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | 1 | subrgss 13955 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
| 3 | eqid 2204 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 4 | 3 | subrg1cl 13962 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (1r‘𝑅) ∈ 𝐴) |
| 5 | subrgrcl 13959 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
| 6 | eqid 2204 | . . . . 5 ⊢ (𝑅 ↾s 𝐴) = (𝑅 ↾s 𝐴) | |
| 7 | subrgsubm.1 | . . . . 5 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 8 | 6, 7 | mgpress 13664 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ (SubRing‘𝑅)) → (𝑀 ↾s 𝐴) = (mulGrp‘(𝑅 ↾s 𝐴))) |
| 9 | 5, 8 | mpancom 422 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑀 ↾s 𝐴) = (mulGrp‘(𝑅 ↾s 𝐴))) |
| 10 | 6 | subrgring 13957 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Ring) |
| 11 | eqid 2204 | . . . . 5 ⊢ (mulGrp‘(𝑅 ↾s 𝐴)) = (mulGrp‘(𝑅 ↾s 𝐴)) | |
| 12 | 11 | ringmgp 13735 | . . . 4 ⊢ ((𝑅 ↾s 𝐴) ∈ Ring → (mulGrp‘(𝑅 ↾s 𝐴)) ∈ Mnd) |
| 13 | 10, 12 | syl 14 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (mulGrp‘(𝑅 ↾s 𝐴)) ∈ Mnd) |
| 14 | 9, 13 | eqeltrd 2281 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑀 ↾s 𝐴) ∈ Mnd) |
| 15 | 7 | ringmgp 13735 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑀 ∈ Mnd) |
| 16 | eqid 2204 | . . . . . 6 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 17 | eqid 2204 | . . . . . 6 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 18 | eqid 2204 | . . . . . 6 ⊢ (𝑀 ↾s 𝐴) = (𝑀 ↾s 𝐴) | |
| 19 | 16, 17, 18 | issubm2 13276 | . . . . 5 ⊢ (𝑀 ∈ Mnd → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd))) |
| 20 | 15, 19 | syl 14 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd))) |
| 21 | 5, 20 | syl 14 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd))) |
| 22 | 7, 1 | mgpbasg 13659 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑀)) |
| 23 | 22 | sseq2d 3222 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (𝐴 ⊆ (Base‘𝑅) ↔ 𝐴 ⊆ (Base‘𝑀))) |
| 24 | 7, 3 | ringidvalg 13694 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) = (0g‘𝑀)) |
| 25 | 24 | eleq1d 2273 | . . . . . 6 ⊢ (𝑅 ∈ Ring → ((1r‘𝑅) ∈ 𝐴 ↔ (0g‘𝑀) ∈ 𝐴)) |
| 26 | 23, 25 | 3anbi12d 1325 | . . . . 5 ⊢ (𝑅 ∈ Ring → ((𝐴 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd))) |
| 27 | 26 | bibi2d 232 | . . . 4 ⊢ (𝑅 ∈ Ring → ((𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd)) ↔ (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd)))) |
| 28 | 5, 27 | syl 14 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → ((𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd)) ↔ (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd)))) |
| 29 | 21, 28 | mpbird 167 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd))) |
| 30 | 2, 4, 14, 29 | mpbir3and 1182 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubMnd‘𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 ⊆ wss 3165 ‘cfv 5270 (class class class)co 5943 Basecbs 12803 ↾s cress 12804 0gc0g 13059 Mndcmnd 13219 SubMndcsubmnd 13261 mulGrpcmgp 13653 1rcur 13692 Ringcrg 13729 SubRingcsubrg 13950 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-pre-ltirr 8036 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-ltxr 8111 df-inn 9036 df-2 9094 df-3 9095 df-ndx 12806 df-slot 12807 df-base 12809 df-sets 12810 df-iress 12811 df-plusg 12893 df-mulr 12894 df-0g 13061 df-mgm 13159 df-sgrp 13205 df-mnd 13220 df-submnd 13263 df-mgp 13654 df-ur 13693 df-ring 13731 df-subrg 13952 |
| This theorem is referenced by: resrhm 13981 resrhm2b 13982 rhmima 13984 lgseisenlem4 15521 |
| Copyright terms: Public domain | W3C validator |