| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subrgsubm | GIF version | ||
| Description: A subring is a submonoid of the multiplicative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| Ref | Expression |
|---|---|
| subrgsubm.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
| Ref | Expression |
|---|---|
| subrgsubm | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubMnd‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | 1 | subrgss 14180 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
| 3 | eqid 2229 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 4 | 3 | subrg1cl 14187 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (1r‘𝑅) ∈ 𝐴) |
| 5 | subrgrcl 14184 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
| 6 | eqid 2229 | . . . . 5 ⊢ (𝑅 ↾s 𝐴) = (𝑅 ↾s 𝐴) | |
| 7 | subrgsubm.1 | . . . . 5 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 8 | 6, 7 | mgpress 13889 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ (SubRing‘𝑅)) → (𝑀 ↾s 𝐴) = (mulGrp‘(𝑅 ↾s 𝐴))) |
| 9 | 5, 8 | mpancom 422 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑀 ↾s 𝐴) = (mulGrp‘(𝑅 ↾s 𝐴))) |
| 10 | 6 | subrgring 14182 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Ring) |
| 11 | eqid 2229 | . . . . 5 ⊢ (mulGrp‘(𝑅 ↾s 𝐴)) = (mulGrp‘(𝑅 ↾s 𝐴)) | |
| 12 | 11 | ringmgp 13960 | . . . 4 ⊢ ((𝑅 ↾s 𝐴) ∈ Ring → (mulGrp‘(𝑅 ↾s 𝐴)) ∈ Mnd) |
| 13 | 10, 12 | syl 14 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (mulGrp‘(𝑅 ↾s 𝐴)) ∈ Mnd) |
| 14 | 9, 13 | eqeltrd 2306 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑀 ↾s 𝐴) ∈ Mnd) |
| 15 | 7 | ringmgp 13960 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑀 ∈ Mnd) |
| 16 | eqid 2229 | . . . . . 6 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 17 | eqid 2229 | . . . . . 6 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 18 | eqid 2229 | . . . . . 6 ⊢ (𝑀 ↾s 𝐴) = (𝑀 ↾s 𝐴) | |
| 19 | 16, 17, 18 | issubm2 13501 | . . . . 5 ⊢ (𝑀 ∈ Mnd → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd))) |
| 20 | 15, 19 | syl 14 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd))) |
| 21 | 5, 20 | syl 14 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd))) |
| 22 | 7, 1 | mgpbasg 13884 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑀)) |
| 23 | 22 | sseq2d 3254 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (𝐴 ⊆ (Base‘𝑅) ↔ 𝐴 ⊆ (Base‘𝑀))) |
| 24 | 7, 3 | ringidvalg 13919 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) = (0g‘𝑀)) |
| 25 | 24 | eleq1d 2298 | . . . . . 6 ⊢ (𝑅 ∈ Ring → ((1r‘𝑅) ∈ 𝐴 ↔ (0g‘𝑀) ∈ 𝐴)) |
| 26 | 23, 25 | 3anbi12d 1347 | . . . . 5 ⊢ (𝑅 ∈ Ring → ((𝐴 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd))) |
| 27 | 26 | bibi2d 232 | . . . 4 ⊢ (𝑅 ∈ Ring → ((𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd)) ↔ (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd)))) |
| 28 | 5, 27 | syl 14 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → ((𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd)) ↔ (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd)))) |
| 29 | 21, 28 | mpbird 167 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd))) |
| 30 | 2, 4, 14, 29 | mpbir3and 1204 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubMnd‘𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ⊆ wss 3197 ‘cfv 5317 (class class class)co 6000 Basecbs 13027 ↾s cress 13028 0gc0g 13284 Mndcmnd 13444 SubMndcsubmnd 13486 mulGrpcmgp 13878 1rcur 13917 Ringcrg 13954 SubRingcsubrg 14175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-pre-ltirr 8107 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-inn 9107 df-2 9165 df-3 9166 df-ndx 13030 df-slot 13031 df-base 13033 df-sets 13034 df-iress 13035 df-plusg 13118 df-mulr 13119 df-0g 13286 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-submnd 13488 df-mgp 13879 df-ur 13918 df-ring 13956 df-subrg 14177 |
| This theorem is referenced by: resrhm 14206 resrhm2b 14207 rhmima 14209 lgseisenlem4 15746 |
| Copyright terms: Public domain | W3C validator |