![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > subrgsubm | GIF version |
Description: A subring is a submonoid of the multiplicative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.) |
Ref | Expression |
---|---|
subrgsubm.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
subrgsubm | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubMnd‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | 1 | subrgss 13718 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
3 | eqid 2193 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
4 | 3 | subrg1cl 13725 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (1r‘𝑅) ∈ 𝐴) |
5 | subrgrcl 13722 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
6 | eqid 2193 | . . . . 5 ⊢ (𝑅 ↾s 𝐴) = (𝑅 ↾s 𝐴) | |
7 | subrgsubm.1 | . . . . 5 ⊢ 𝑀 = (mulGrp‘𝑅) | |
8 | 6, 7 | mgpress 13427 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ (SubRing‘𝑅)) → (𝑀 ↾s 𝐴) = (mulGrp‘(𝑅 ↾s 𝐴))) |
9 | 5, 8 | mpancom 422 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑀 ↾s 𝐴) = (mulGrp‘(𝑅 ↾s 𝐴))) |
10 | 6 | subrgring 13720 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Ring) |
11 | eqid 2193 | . . . . 5 ⊢ (mulGrp‘(𝑅 ↾s 𝐴)) = (mulGrp‘(𝑅 ↾s 𝐴)) | |
12 | 11 | ringmgp 13498 | . . . 4 ⊢ ((𝑅 ↾s 𝐴) ∈ Ring → (mulGrp‘(𝑅 ↾s 𝐴)) ∈ Mnd) |
13 | 10, 12 | syl 14 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (mulGrp‘(𝑅 ↾s 𝐴)) ∈ Mnd) |
14 | 9, 13 | eqeltrd 2270 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑀 ↾s 𝐴) ∈ Mnd) |
15 | 7 | ringmgp 13498 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑀 ∈ Mnd) |
16 | eqid 2193 | . . . . . 6 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
17 | eqid 2193 | . . . . . 6 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
18 | eqid 2193 | . . . . . 6 ⊢ (𝑀 ↾s 𝐴) = (𝑀 ↾s 𝐴) | |
19 | 16, 17, 18 | issubm2 13045 | . . . . 5 ⊢ (𝑀 ∈ Mnd → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd))) |
20 | 15, 19 | syl 14 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd))) |
21 | 5, 20 | syl 14 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd))) |
22 | 7, 1 | mgpbasg 13422 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑀)) |
23 | 22 | sseq2d 3209 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (𝐴 ⊆ (Base‘𝑅) ↔ 𝐴 ⊆ (Base‘𝑀))) |
24 | 7, 3 | ringidvalg 13457 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) = (0g‘𝑀)) |
25 | 24 | eleq1d 2262 | . . . . . 6 ⊢ (𝑅 ∈ Ring → ((1r‘𝑅) ∈ 𝐴 ↔ (0g‘𝑀) ∈ 𝐴)) |
26 | 23, 25 | 3anbi12d 1324 | . . . . 5 ⊢ (𝑅 ∈ Ring → ((𝐴 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd))) |
27 | 26 | bibi2d 232 | . . . 4 ⊢ (𝑅 ∈ Ring → ((𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd)) ↔ (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd)))) |
28 | 5, 27 | syl 14 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → ((𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd)) ↔ (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd)))) |
29 | 21, 28 | mpbird 167 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd))) |
30 | 2, 4, 14, 29 | mpbir3and 1182 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubMnd‘𝑀)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ⊆ wss 3153 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 ↾s cress 12619 0gc0g 12867 Mndcmnd 12997 SubMndcsubmnd 13030 mulGrpcmgp 13416 1rcur 13455 Ringcrg 13492 SubRingcsubrg 13713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-inn 8983 df-2 9041 df-3 9042 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-iress 12626 df-plusg 12708 df-mulr 12709 df-0g 12869 df-mgm 12939 df-sgrp 12985 df-mnd 12998 df-submnd 13032 df-mgp 13417 df-ur 13456 df-ring 13494 df-subrg 13715 |
This theorem is referenced by: resrhm 13744 resrhm2b 13745 rhmima 13747 lgseisenlem4 15189 |
Copyright terms: Public domain | W3C validator |