ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgsubm GIF version

Theorem subrgsubm 13293
Description: A subring is a submonoid of the multiplicative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypothesis
Ref Expression
subrgsubm.1 𝑀 = (mulGrpβ€˜π‘…)
Assertion
Ref Expression
subrgsubm (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝐴 ∈ (SubMndβ€˜π‘€))

Proof of Theorem subrgsubm
StepHypRef Expression
1 eqid 2177 . . 3 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
21subrgss 13281 . 2 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝐴 βŠ† (Baseβ€˜π‘…))
3 eqid 2177 . . 3 (1rβ€˜π‘…) = (1rβ€˜π‘…)
43subrg1cl 13288 . 2 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ (1rβ€˜π‘…) ∈ 𝐴)
5 subrgrcl 13285 . . . 4 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝑅 ∈ Ring)
6 eqid 2177 . . . . 5 (𝑅 β†Ύs 𝐴) = (𝑅 β†Ύs 𝐴)
7 subrgsubm.1 . . . . 5 𝑀 = (mulGrpβ€˜π‘…)
86, 7mgpress 13072 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) β†’ (𝑀 β†Ύs 𝐴) = (mulGrpβ€˜(𝑅 β†Ύs 𝐴)))
95, 8mpancom 422 . . 3 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ (𝑀 β†Ύs 𝐴) = (mulGrpβ€˜(𝑅 β†Ύs 𝐴)))
106subrgring 13283 . . . 4 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ (𝑅 β†Ύs 𝐴) ∈ Ring)
11 eqid 2177 . . . . 5 (mulGrpβ€˜(𝑅 β†Ύs 𝐴)) = (mulGrpβ€˜(𝑅 β†Ύs 𝐴))
1211ringmgp 13116 . . . 4 ((𝑅 β†Ύs 𝐴) ∈ Ring β†’ (mulGrpβ€˜(𝑅 β†Ύs 𝐴)) ∈ Mnd)
1310, 12syl 14 . . 3 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ (mulGrpβ€˜(𝑅 β†Ύs 𝐴)) ∈ Mnd)
149, 13eqeltrd 2254 . 2 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ (𝑀 β†Ύs 𝐴) ∈ Mnd)
157ringmgp 13116 . . . . 5 (𝑅 ∈ Ring β†’ 𝑀 ∈ Mnd)
16 eqid 2177 . . . . . 6 (Baseβ€˜π‘€) = (Baseβ€˜π‘€)
17 eqid 2177 . . . . . 6 (0gβ€˜π‘€) = (0gβ€˜π‘€)
18 eqid 2177 . . . . . 6 (𝑀 β†Ύs 𝐴) = (𝑀 β†Ύs 𝐴)
1916, 17, 18issubm2 12796 . . . . 5 (𝑀 ∈ Mnd β†’ (𝐴 ∈ (SubMndβ€˜π‘€) ↔ (𝐴 βŠ† (Baseβ€˜π‘€) ∧ (0gβ€˜π‘€) ∈ 𝐴 ∧ (𝑀 β†Ύs 𝐴) ∈ Mnd)))
2015, 19syl 14 . . . 4 (𝑅 ∈ Ring β†’ (𝐴 ∈ (SubMndβ€˜π‘€) ↔ (𝐴 βŠ† (Baseβ€˜π‘€) ∧ (0gβ€˜π‘€) ∈ 𝐴 ∧ (𝑀 β†Ύs 𝐴) ∈ Mnd)))
215, 20syl 14 . . 3 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ (𝐴 ∈ (SubMndβ€˜π‘€) ↔ (𝐴 βŠ† (Baseβ€˜π‘€) ∧ (0gβ€˜π‘€) ∈ 𝐴 ∧ (𝑀 β†Ύs 𝐴) ∈ Mnd)))
227, 1mgpbasg 13067 . . . . . . 7 (𝑅 ∈ Ring β†’ (Baseβ€˜π‘…) = (Baseβ€˜π‘€))
2322sseq2d 3185 . . . . . 6 (𝑅 ∈ Ring β†’ (𝐴 βŠ† (Baseβ€˜π‘…) ↔ 𝐴 βŠ† (Baseβ€˜π‘€)))
247, 3ringidvalg 13075 . . . . . . 7 (𝑅 ∈ Ring β†’ (1rβ€˜π‘…) = (0gβ€˜π‘€))
2524eleq1d 2246 . . . . . 6 (𝑅 ∈ Ring β†’ ((1rβ€˜π‘…) ∈ 𝐴 ↔ (0gβ€˜π‘€) ∈ 𝐴))
2623, 253anbi12d 1313 . . . . 5 (𝑅 ∈ Ring β†’ ((𝐴 βŠ† (Baseβ€˜π‘…) ∧ (1rβ€˜π‘…) ∈ 𝐴 ∧ (𝑀 β†Ύs 𝐴) ∈ Mnd) ↔ (𝐴 βŠ† (Baseβ€˜π‘€) ∧ (0gβ€˜π‘€) ∈ 𝐴 ∧ (𝑀 β†Ύs 𝐴) ∈ Mnd)))
2726bibi2d 232 . . . 4 (𝑅 ∈ Ring β†’ ((𝐴 ∈ (SubMndβ€˜π‘€) ↔ (𝐴 βŠ† (Baseβ€˜π‘…) ∧ (1rβ€˜π‘…) ∈ 𝐴 ∧ (𝑀 β†Ύs 𝐴) ∈ Mnd)) ↔ (𝐴 ∈ (SubMndβ€˜π‘€) ↔ (𝐴 βŠ† (Baseβ€˜π‘€) ∧ (0gβ€˜π‘€) ∈ 𝐴 ∧ (𝑀 β†Ύs 𝐴) ∈ Mnd))))
285, 27syl 14 . . 3 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ ((𝐴 ∈ (SubMndβ€˜π‘€) ↔ (𝐴 βŠ† (Baseβ€˜π‘…) ∧ (1rβ€˜π‘…) ∈ 𝐴 ∧ (𝑀 β†Ύs 𝐴) ∈ Mnd)) ↔ (𝐴 ∈ (SubMndβ€˜π‘€) ↔ (𝐴 βŠ† (Baseβ€˜π‘€) ∧ (0gβ€˜π‘€) ∈ 𝐴 ∧ (𝑀 β†Ύs 𝐴) ∈ Mnd))))
2921, 28mpbird 167 . 2 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ (𝐴 ∈ (SubMndβ€˜π‘€) ↔ (𝐴 βŠ† (Baseβ€˜π‘…) ∧ (1rβ€˜π‘…) ∈ 𝐴 ∧ (𝑀 β†Ύs 𝐴) ∈ Mnd)))
302, 4, 14, 29mpbir3and 1180 1 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝐴 ∈ (SubMndβ€˜π‘€))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ↔ wb 105   ∧ w3a 978   = wceq 1353   ∈ wcel 2148   βŠ† wss 3129  β€˜cfv 5215  (class class class)co 5872  Basecbs 12454   β†Ύs cress 12455  0gc0g 12693  Mndcmnd 12749  SubMndcsubmnd 12782  mulGrpcmgp 13061  1rcur 13073  Ringcrg 13110  SubRingcsubrg 13276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-cnex 7899  ax-resscn 7900  ax-1cn 7901  ax-1re 7902  ax-icn 7903  ax-addcl 7904  ax-addrcl 7905  ax-mulcl 7906  ax-addcom 7908  ax-addass 7910  ax-i2m1 7913  ax-0lt1 7914  ax-0id 7916  ax-rnegex 7917  ax-pre-ltirr 7920  ax-pre-lttrn 7922  ax-pre-ltadd 7924
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4003  df-opab 4064  df-mpt 4065  df-id 4292  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-res 4637  df-ima 4638  df-iota 5177  df-fun 5217  df-fn 5218  df-fv 5223  df-riota 5828  df-ov 5875  df-oprab 5876  df-mpo 5877  df-pnf 7990  df-mnf 7991  df-ltxr 7993  df-inn 8916  df-2 8974  df-3 8975  df-ndx 12457  df-slot 12458  df-base 12460  df-sets 12461  df-iress 12462  df-plusg 12541  df-mulr 12542  df-0g 12695  df-mgm 12707  df-sgrp 12740  df-mnd 12750  df-submnd 12784  df-mgp 13062  df-ur 13074  df-ring 13112  df-subrg 13278
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator