![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > subrgsubm | GIF version |
Description: A subring is a submonoid of the multiplicative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.) |
Ref | Expression |
---|---|
subrgsubm.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
subrgsubm | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubMnd‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | 1 | subrgss 13721 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
3 | eqid 2193 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
4 | 3 | subrg1cl 13728 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (1r‘𝑅) ∈ 𝐴) |
5 | subrgrcl 13725 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
6 | eqid 2193 | . . . . 5 ⊢ (𝑅 ↾s 𝐴) = (𝑅 ↾s 𝐴) | |
7 | subrgsubm.1 | . . . . 5 ⊢ 𝑀 = (mulGrp‘𝑅) | |
8 | 6, 7 | mgpress 13430 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ (SubRing‘𝑅)) → (𝑀 ↾s 𝐴) = (mulGrp‘(𝑅 ↾s 𝐴))) |
9 | 5, 8 | mpancom 422 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑀 ↾s 𝐴) = (mulGrp‘(𝑅 ↾s 𝐴))) |
10 | 6 | subrgring 13723 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Ring) |
11 | eqid 2193 | . . . . 5 ⊢ (mulGrp‘(𝑅 ↾s 𝐴)) = (mulGrp‘(𝑅 ↾s 𝐴)) | |
12 | 11 | ringmgp 13501 | . . . 4 ⊢ ((𝑅 ↾s 𝐴) ∈ Ring → (mulGrp‘(𝑅 ↾s 𝐴)) ∈ Mnd) |
13 | 10, 12 | syl 14 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (mulGrp‘(𝑅 ↾s 𝐴)) ∈ Mnd) |
14 | 9, 13 | eqeltrd 2270 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑀 ↾s 𝐴) ∈ Mnd) |
15 | 7 | ringmgp 13501 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑀 ∈ Mnd) |
16 | eqid 2193 | . . . . . 6 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
17 | eqid 2193 | . . . . . 6 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
18 | eqid 2193 | . . . . . 6 ⊢ (𝑀 ↾s 𝐴) = (𝑀 ↾s 𝐴) | |
19 | 16, 17, 18 | issubm2 13048 | . . . . 5 ⊢ (𝑀 ∈ Mnd → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd))) |
20 | 15, 19 | syl 14 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd))) |
21 | 5, 20 | syl 14 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd))) |
22 | 7, 1 | mgpbasg 13425 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑀)) |
23 | 22 | sseq2d 3210 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (𝐴 ⊆ (Base‘𝑅) ↔ 𝐴 ⊆ (Base‘𝑀))) |
24 | 7, 3 | ringidvalg 13460 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) = (0g‘𝑀)) |
25 | 24 | eleq1d 2262 | . . . . . 6 ⊢ (𝑅 ∈ Ring → ((1r‘𝑅) ∈ 𝐴 ↔ (0g‘𝑀) ∈ 𝐴)) |
26 | 23, 25 | 3anbi12d 1324 | . . . . 5 ⊢ (𝑅 ∈ Ring → ((𝐴 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd))) |
27 | 26 | bibi2d 232 | . . . 4 ⊢ (𝑅 ∈ Ring → ((𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd)) ↔ (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd)))) |
28 | 5, 27 | syl 14 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → ((𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd)) ↔ (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd)))) |
29 | 21, 28 | mpbird 167 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd))) |
30 | 2, 4, 14, 29 | mpbir3and 1182 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubMnd‘𝑀)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ⊆ wss 3154 ‘cfv 5255 (class class class)co 5919 Basecbs 12621 ↾s cress 12622 0gc0g 12870 Mndcmnd 13000 SubMndcsubmnd 13033 mulGrpcmgp 13419 1rcur 13458 Ringcrg 13495 SubRingcsubrg 13716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-ltirr 7986 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-inn 8985 df-2 9043 df-3 9044 df-ndx 12624 df-slot 12625 df-base 12627 df-sets 12628 df-iress 12629 df-plusg 12711 df-mulr 12712 df-0g 12872 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-submnd 13035 df-mgp 13420 df-ur 13459 df-ring 13497 df-subrg 13718 |
This theorem is referenced by: resrhm 13747 resrhm2b 13748 rhmima 13750 lgseisenlem4 15230 |
Copyright terms: Public domain | W3C validator |