![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > subrgsubm | GIF version |
Description: A subring is a submonoid of the multiplicative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.) |
Ref | Expression |
---|---|
subrgsubm.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
subrgsubm | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubMnd‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2177 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | 1 | subrgss 13349 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
3 | eqid 2177 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
4 | 3 | subrg1cl 13356 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (1r‘𝑅) ∈ 𝐴) |
5 | subrgrcl 13353 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
6 | eqid 2177 | . . . . 5 ⊢ (𝑅 ↾s 𝐴) = (𝑅 ↾s 𝐴) | |
7 | subrgsubm.1 | . . . . 5 ⊢ 𝑀 = (mulGrp‘𝑅) | |
8 | 6, 7 | mgpress 13147 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ (SubRing‘𝑅)) → (𝑀 ↾s 𝐴) = (mulGrp‘(𝑅 ↾s 𝐴))) |
9 | 5, 8 | mpancom 422 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑀 ↾s 𝐴) = (mulGrp‘(𝑅 ↾s 𝐴))) |
10 | 6 | subrgring 13351 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Ring) |
11 | eqid 2177 | . . . . 5 ⊢ (mulGrp‘(𝑅 ↾s 𝐴)) = (mulGrp‘(𝑅 ↾s 𝐴)) | |
12 | 11 | ringmgp 13191 | . . . 4 ⊢ ((𝑅 ↾s 𝐴) ∈ Ring → (mulGrp‘(𝑅 ↾s 𝐴)) ∈ Mnd) |
13 | 10, 12 | syl 14 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (mulGrp‘(𝑅 ↾s 𝐴)) ∈ Mnd) |
14 | 9, 13 | eqeltrd 2254 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑀 ↾s 𝐴) ∈ Mnd) |
15 | 7 | ringmgp 13191 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑀 ∈ Mnd) |
16 | eqid 2177 | . . . . . 6 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
17 | eqid 2177 | . . . . . 6 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
18 | eqid 2177 | . . . . . 6 ⊢ (𝑀 ↾s 𝐴) = (𝑀 ↾s 𝐴) | |
19 | 16, 17, 18 | issubm2 12870 | . . . . 5 ⊢ (𝑀 ∈ Mnd → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd))) |
20 | 15, 19 | syl 14 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd))) |
21 | 5, 20 | syl 14 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd))) |
22 | 7, 1 | mgpbasg 13142 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑀)) |
23 | 22 | sseq2d 3187 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (𝐴 ⊆ (Base‘𝑅) ↔ 𝐴 ⊆ (Base‘𝑀))) |
24 | 7, 3 | ringidvalg 13150 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) = (0g‘𝑀)) |
25 | 24 | eleq1d 2246 | . . . . . 6 ⊢ (𝑅 ∈ Ring → ((1r‘𝑅) ∈ 𝐴 ↔ (0g‘𝑀) ∈ 𝐴)) |
26 | 23, 25 | 3anbi12d 1313 | . . . . 5 ⊢ (𝑅 ∈ Ring → ((𝐴 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd))) |
27 | 26 | bibi2d 232 | . . . 4 ⊢ (𝑅 ∈ Ring → ((𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd)) ↔ (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd)))) |
28 | 5, 27 | syl 14 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → ((𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd)) ↔ (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd)))) |
29 | 21, 28 | mpbird 167 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐴 ∧ (𝑀 ↾s 𝐴) ∈ Mnd))) |
30 | 2, 4, 14, 29 | mpbir3and 1180 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubMnd‘𝑀)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 ⊆ wss 3131 ‘cfv 5218 (class class class)co 5878 Basecbs 12465 ↾s cress 12466 0gc0g 12711 Mndcmnd 12823 SubMndcsubmnd 12856 mulGrpcmgp 13136 1rcur 13148 Ringcrg 13185 SubRingcsubrg 13344 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-addcom 7914 ax-addass 7916 ax-i2m1 7919 ax-0lt1 7920 ax-0id 7922 ax-rnegex 7923 ax-pre-ltirr 7926 ax-pre-lttrn 7928 ax-pre-ltadd 7930 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-pnf 7997 df-mnf 7998 df-ltxr 8000 df-inn 8923 df-2 8981 df-3 8982 df-ndx 12468 df-slot 12469 df-base 12471 df-sets 12472 df-iress 12473 df-plusg 12552 df-mulr 12553 df-0g 12713 df-mgm 12781 df-sgrp 12814 df-mnd 12824 df-submnd 12858 df-mgp 13137 df-ur 13149 df-ring 13187 df-subrg 13346 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |