ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgsubm GIF version

Theorem subrgsubm 13967
Description: A subring is a submonoid of the multiplicative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypothesis
Ref Expression
subrgsubm.1 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
subrgsubm (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubMnd‘𝑀))

Proof of Theorem subrgsubm
StepHypRef Expression
1 eqid 2204 . . 3 (Base‘𝑅) = (Base‘𝑅)
21subrgss 13955 . 2 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
3 eqid 2204 . . 3 (1r𝑅) = (1r𝑅)
43subrg1cl 13962 . 2 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) ∈ 𝐴)
5 subrgrcl 13959 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
6 eqid 2204 . . . . 5 (𝑅s 𝐴) = (𝑅s 𝐴)
7 subrgsubm.1 . . . . 5 𝑀 = (mulGrp‘𝑅)
86, 7mgpress 13664 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴 ∈ (SubRing‘𝑅)) → (𝑀s 𝐴) = (mulGrp‘(𝑅s 𝐴)))
95, 8mpancom 422 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (𝑀s 𝐴) = (mulGrp‘(𝑅s 𝐴)))
106subrgring 13957 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → (𝑅s 𝐴) ∈ Ring)
11 eqid 2204 . . . . 5 (mulGrp‘(𝑅s 𝐴)) = (mulGrp‘(𝑅s 𝐴))
1211ringmgp 13735 . . . 4 ((𝑅s 𝐴) ∈ Ring → (mulGrp‘(𝑅s 𝐴)) ∈ Mnd)
1310, 12syl 14 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (mulGrp‘(𝑅s 𝐴)) ∈ Mnd)
149, 13eqeltrd 2281 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝑀s 𝐴) ∈ Mnd)
157ringmgp 13735 . . . . 5 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
16 eqid 2204 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
17 eqid 2204 . . . . . 6 (0g𝑀) = (0g𝑀)
18 eqid 2204 . . . . . 6 (𝑀s 𝐴) = (𝑀s 𝐴)
1916, 17, 18issubm2 13276 . . . . 5 (𝑀 ∈ Mnd → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd)))
2015, 19syl 14 . . . 4 (𝑅 ∈ Ring → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd)))
215, 20syl 14 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd)))
227, 1mgpbasg 13659 . . . . . . 7 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑀))
2322sseq2d 3222 . . . . . 6 (𝑅 ∈ Ring → (𝐴 ⊆ (Base‘𝑅) ↔ 𝐴 ⊆ (Base‘𝑀)))
247, 3ringidvalg 13694 . . . . . . 7 (𝑅 ∈ Ring → (1r𝑅) = (0g𝑀))
2524eleq1d 2273 . . . . . 6 (𝑅 ∈ Ring → ((1r𝑅) ∈ 𝐴 ↔ (0g𝑀) ∈ 𝐴))
2623, 253anbi12d 1325 . . . . 5 (𝑅 ∈ Ring → ((𝐴 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd)))
2726bibi2d 232 . . . 4 (𝑅 ∈ Ring → ((𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd)) ↔ (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd))))
285, 27syl 14 . . 3 (𝐴 ∈ (SubRing‘𝑅) → ((𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd)) ↔ (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd))))
2921, 28mpbird 167 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd)))
302, 4, 14, 29mpbir3and 1182 1 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubMnd‘𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 980   = wceq 1372  wcel 2175  wss 3165  cfv 5270  (class class class)co 5943  Basecbs 12803  s cress 12804  0gc0g 13059  Mndcmnd 13219  SubMndcsubmnd 13261  mulGrpcmgp 13653  1rcur 13692  Ringcrg 13729  SubRingcsubrg 13950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-ndx 12806  df-slot 12807  df-base 12809  df-sets 12810  df-iress 12811  df-plusg 12893  df-mulr 12894  df-0g 13061  df-mgm 13159  df-sgrp 13205  df-mnd 13220  df-submnd 13263  df-mgp 13654  df-ur 13693  df-ring 13731  df-subrg 13952
This theorem is referenced by:  resrhm  13981  resrhm2b  13982  rhmima  13984  lgseisenlem4  15521
  Copyright terms: Public domain W3C validator