ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgsubm GIF version

Theorem subrgsubm 14192
Description: A subring is a submonoid of the multiplicative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypothesis
Ref Expression
subrgsubm.1 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
subrgsubm (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubMnd‘𝑀))

Proof of Theorem subrgsubm
StepHypRef Expression
1 eqid 2229 . . 3 (Base‘𝑅) = (Base‘𝑅)
21subrgss 14180 . 2 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
3 eqid 2229 . . 3 (1r𝑅) = (1r𝑅)
43subrg1cl 14187 . 2 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) ∈ 𝐴)
5 subrgrcl 14184 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
6 eqid 2229 . . . . 5 (𝑅s 𝐴) = (𝑅s 𝐴)
7 subrgsubm.1 . . . . 5 𝑀 = (mulGrp‘𝑅)
86, 7mgpress 13889 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴 ∈ (SubRing‘𝑅)) → (𝑀s 𝐴) = (mulGrp‘(𝑅s 𝐴)))
95, 8mpancom 422 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (𝑀s 𝐴) = (mulGrp‘(𝑅s 𝐴)))
106subrgring 14182 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → (𝑅s 𝐴) ∈ Ring)
11 eqid 2229 . . . . 5 (mulGrp‘(𝑅s 𝐴)) = (mulGrp‘(𝑅s 𝐴))
1211ringmgp 13960 . . . 4 ((𝑅s 𝐴) ∈ Ring → (mulGrp‘(𝑅s 𝐴)) ∈ Mnd)
1310, 12syl 14 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (mulGrp‘(𝑅s 𝐴)) ∈ Mnd)
149, 13eqeltrd 2306 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝑀s 𝐴) ∈ Mnd)
157ringmgp 13960 . . . . 5 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
16 eqid 2229 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
17 eqid 2229 . . . . . 6 (0g𝑀) = (0g𝑀)
18 eqid 2229 . . . . . 6 (𝑀s 𝐴) = (𝑀s 𝐴)
1916, 17, 18issubm2 13501 . . . . 5 (𝑀 ∈ Mnd → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd)))
2015, 19syl 14 . . . 4 (𝑅 ∈ Ring → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd)))
215, 20syl 14 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd)))
227, 1mgpbasg 13884 . . . . . . 7 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑀))
2322sseq2d 3254 . . . . . 6 (𝑅 ∈ Ring → (𝐴 ⊆ (Base‘𝑅) ↔ 𝐴 ⊆ (Base‘𝑀)))
247, 3ringidvalg 13919 . . . . . . 7 (𝑅 ∈ Ring → (1r𝑅) = (0g𝑀))
2524eleq1d 2298 . . . . . 6 (𝑅 ∈ Ring → ((1r𝑅) ∈ 𝐴 ↔ (0g𝑀) ∈ 𝐴))
2623, 253anbi12d 1347 . . . . 5 (𝑅 ∈ Ring → ((𝐴 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd)))
2726bibi2d 232 . . . 4 (𝑅 ∈ Ring → ((𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd)) ↔ (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd))))
285, 27syl 14 . . 3 (𝐴 ∈ (SubRing‘𝑅) → ((𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd)) ↔ (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd))))
2921, 28mpbird 167 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd)))
302, 4, 14, 29mpbir3and 1204 1 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubMnd‘𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 1002   = wceq 1395  wcel 2200  wss 3197  cfv 5317  (class class class)co 6000  Basecbs 13027  s cress 13028  0gc0g 13284  Mndcmnd 13444  SubMndcsubmnd 13486  mulGrpcmgp 13878  1rcur 13917  Ringcrg 13954  SubRingcsubrg 14175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-submnd 13488  df-mgp 13879  df-ur 13918  df-ring 13956  df-subrg 14177
This theorem is referenced by:  resrhm  14206  resrhm2b  14207  rhmima  14209  lgseisenlem4  15746
  Copyright terms: Public domain W3C validator