ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgsubm GIF version

Theorem subrgsubm 13733
Description: A subring is a submonoid of the multiplicative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypothesis
Ref Expression
subrgsubm.1 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
subrgsubm (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubMnd‘𝑀))

Proof of Theorem subrgsubm
StepHypRef Expression
1 eqid 2193 . . 3 (Base‘𝑅) = (Base‘𝑅)
21subrgss 13721 . 2 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
3 eqid 2193 . . 3 (1r𝑅) = (1r𝑅)
43subrg1cl 13728 . 2 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) ∈ 𝐴)
5 subrgrcl 13725 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
6 eqid 2193 . . . . 5 (𝑅s 𝐴) = (𝑅s 𝐴)
7 subrgsubm.1 . . . . 5 𝑀 = (mulGrp‘𝑅)
86, 7mgpress 13430 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴 ∈ (SubRing‘𝑅)) → (𝑀s 𝐴) = (mulGrp‘(𝑅s 𝐴)))
95, 8mpancom 422 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (𝑀s 𝐴) = (mulGrp‘(𝑅s 𝐴)))
106subrgring 13723 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → (𝑅s 𝐴) ∈ Ring)
11 eqid 2193 . . . . 5 (mulGrp‘(𝑅s 𝐴)) = (mulGrp‘(𝑅s 𝐴))
1211ringmgp 13501 . . . 4 ((𝑅s 𝐴) ∈ Ring → (mulGrp‘(𝑅s 𝐴)) ∈ Mnd)
1310, 12syl 14 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (mulGrp‘(𝑅s 𝐴)) ∈ Mnd)
149, 13eqeltrd 2270 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝑀s 𝐴) ∈ Mnd)
157ringmgp 13501 . . . . 5 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
16 eqid 2193 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
17 eqid 2193 . . . . . 6 (0g𝑀) = (0g𝑀)
18 eqid 2193 . . . . . 6 (𝑀s 𝐴) = (𝑀s 𝐴)
1916, 17, 18issubm2 13048 . . . . 5 (𝑀 ∈ Mnd → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd)))
2015, 19syl 14 . . . 4 (𝑅 ∈ Ring → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd)))
215, 20syl 14 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd)))
227, 1mgpbasg 13425 . . . . . . 7 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑀))
2322sseq2d 3210 . . . . . 6 (𝑅 ∈ Ring → (𝐴 ⊆ (Base‘𝑅) ↔ 𝐴 ⊆ (Base‘𝑀)))
247, 3ringidvalg 13460 . . . . . . 7 (𝑅 ∈ Ring → (1r𝑅) = (0g𝑀))
2524eleq1d 2262 . . . . . 6 (𝑅 ∈ Ring → ((1r𝑅) ∈ 𝐴 ↔ (0g𝑀) ∈ 𝐴))
2623, 253anbi12d 1324 . . . . 5 (𝑅 ∈ Ring → ((𝐴 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd)))
2726bibi2d 232 . . . 4 (𝑅 ∈ Ring → ((𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd)) ↔ (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd))))
285, 27syl 14 . . 3 (𝐴 ∈ (SubRing‘𝑅) → ((𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd)) ↔ (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd))))
2921, 28mpbird 167 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ∈ (SubMnd‘𝑀) ↔ (𝐴 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝐴 ∧ (𝑀s 𝐴) ∈ Mnd)))
302, 4, 14, 29mpbir3and 1182 1 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubMnd‘𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 980   = wceq 1364  wcel 2164  wss 3154  cfv 5255  (class class class)co 5919  Basecbs 12621  s cress 12622  0gc0g 12870  Mndcmnd 13000  SubMndcsubmnd 13033  mulGrpcmgp 13419  1rcur 13458  Ringcrg 13495  SubRingcsubrg 13716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-mulr 12712  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-submnd 13035  df-mgp 13420  df-ur 13459  df-ring 13497  df-subrg 13718
This theorem is referenced by:  resrhm  13747  resrhm2b  13748  rhmima  13750  lgseisenlem4  15230
  Copyright terms: Public domain W3C validator