ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgsubm GIF version

Theorem subrgsubm 13361
Description: A subring is a submonoid of the multiplicative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypothesis
Ref Expression
subrgsubm.1 𝑀 = (mulGrpβ€˜π‘…)
Assertion
Ref Expression
subrgsubm (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝐴 ∈ (SubMndβ€˜π‘€))

Proof of Theorem subrgsubm
StepHypRef Expression
1 eqid 2177 . . 3 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
21subrgss 13349 . 2 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝐴 βŠ† (Baseβ€˜π‘…))
3 eqid 2177 . . 3 (1rβ€˜π‘…) = (1rβ€˜π‘…)
43subrg1cl 13356 . 2 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ (1rβ€˜π‘…) ∈ 𝐴)
5 subrgrcl 13353 . . . 4 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝑅 ∈ Ring)
6 eqid 2177 . . . . 5 (𝑅 β†Ύs 𝐴) = (𝑅 β†Ύs 𝐴)
7 subrgsubm.1 . . . . 5 𝑀 = (mulGrpβ€˜π‘…)
86, 7mgpress 13147 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) β†’ (𝑀 β†Ύs 𝐴) = (mulGrpβ€˜(𝑅 β†Ύs 𝐴)))
95, 8mpancom 422 . . 3 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ (𝑀 β†Ύs 𝐴) = (mulGrpβ€˜(𝑅 β†Ύs 𝐴)))
106subrgring 13351 . . . 4 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ (𝑅 β†Ύs 𝐴) ∈ Ring)
11 eqid 2177 . . . . 5 (mulGrpβ€˜(𝑅 β†Ύs 𝐴)) = (mulGrpβ€˜(𝑅 β†Ύs 𝐴))
1211ringmgp 13191 . . . 4 ((𝑅 β†Ύs 𝐴) ∈ Ring β†’ (mulGrpβ€˜(𝑅 β†Ύs 𝐴)) ∈ Mnd)
1310, 12syl 14 . . 3 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ (mulGrpβ€˜(𝑅 β†Ύs 𝐴)) ∈ Mnd)
149, 13eqeltrd 2254 . 2 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ (𝑀 β†Ύs 𝐴) ∈ Mnd)
157ringmgp 13191 . . . . 5 (𝑅 ∈ Ring β†’ 𝑀 ∈ Mnd)
16 eqid 2177 . . . . . 6 (Baseβ€˜π‘€) = (Baseβ€˜π‘€)
17 eqid 2177 . . . . . 6 (0gβ€˜π‘€) = (0gβ€˜π‘€)
18 eqid 2177 . . . . . 6 (𝑀 β†Ύs 𝐴) = (𝑀 β†Ύs 𝐴)
1916, 17, 18issubm2 12870 . . . . 5 (𝑀 ∈ Mnd β†’ (𝐴 ∈ (SubMndβ€˜π‘€) ↔ (𝐴 βŠ† (Baseβ€˜π‘€) ∧ (0gβ€˜π‘€) ∈ 𝐴 ∧ (𝑀 β†Ύs 𝐴) ∈ Mnd)))
2015, 19syl 14 . . . 4 (𝑅 ∈ Ring β†’ (𝐴 ∈ (SubMndβ€˜π‘€) ↔ (𝐴 βŠ† (Baseβ€˜π‘€) ∧ (0gβ€˜π‘€) ∈ 𝐴 ∧ (𝑀 β†Ύs 𝐴) ∈ Mnd)))
215, 20syl 14 . . 3 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ (𝐴 ∈ (SubMndβ€˜π‘€) ↔ (𝐴 βŠ† (Baseβ€˜π‘€) ∧ (0gβ€˜π‘€) ∈ 𝐴 ∧ (𝑀 β†Ύs 𝐴) ∈ Mnd)))
227, 1mgpbasg 13142 . . . . . . 7 (𝑅 ∈ Ring β†’ (Baseβ€˜π‘…) = (Baseβ€˜π‘€))
2322sseq2d 3187 . . . . . 6 (𝑅 ∈ Ring β†’ (𝐴 βŠ† (Baseβ€˜π‘…) ↔ 𝐴 βŠ† (Baseβ€˜π‘€)))
247, 3ringidvalg 13150 . . . . . . 7 (𝑅 ∈ Ring β†’ (1rβ€˜π‘…) = (0gβ€˜π‘€))
2524eleq1d 2246 . . . . . 6 (𝑅 ∈ Ring β†’ ((1rβ€˜π‘…) ∈ 𝐴 ↔ (0gβ€˜π‘€) ∈ 𝐴))
2623, 253anbi12d 1313 . . . . 5 (𝑅 ∈ Ring β†’ ((𝐴 βŠ† (Baseβ€˜π‘…) ∧ (1rβ€˜π‘…) ∈ 𝐴 ∧ (𝑀 β†Ύs 𝐴) ∈ Mnd) ↔ (𝐴 βŠ† (Baseβ€˜π‘€) ∧ (0gβ€˜π‘€) ∈ 𝐴 ∧ (𝑀 β†Ύs 𝐴) ∈ Mnd)))
2726bibi2d 232 . . . 4 (𝑅 ∈ Ring β†’ ((𝐴 ∈ (SubMndβ€˜π‘€) ↔ (𝐴 βŠ† (Baseβ€˜π‘…) ∧ (1rβ€˜π‘…) ∈ 𝐴 ∧ (𝑀 β†Ύs 𝐴) ∈ Mnd)) ↔ (𝐴 ∈ (SubMndβ€˜π‘€) ↔ (𝐴 βŠ† (Baseβ€˜π‘€) ∧ (0gβ€˜π‘€) ∈ 𝐴 ∧ (𝑀 β†Ύs 𝐴) ∈ Mnd))))
285, 27syl 14 . . 3 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ ((𝐴 ∈ (SubMndβ€˜π‘€) ↔ (𝐴 βŠ† (Baseβ€˜π‘…) ∧ (1rβ€˜π‘…) ∈ 𝐴 ∧ (𝑀 β†Ύs 𝐴) ∈ Mnd)) ↔ (𝐴 ∈ (SubMndβ€˜π‘€) ↔ (𝐴 βŠ† (Baseβ€˜π‘€) ∧ (0gβ€˜π‘€) ∈ 𝐴 ∧ (𝑀 β†Ύs 𝐴) ∈ Mnd))))
2921, 28mpbird 167 . 2 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ (𝐴 ∈ (SubMndβ€˜π‘€) ↔ (𝐴 βŠ† (Baseβ€˜π‘…) ∧ (1rβ€˜π‘…) ∈ 𝐴 ∧ (𝑀 β†Ύs 𝐴) ∈ Mnd)))
302, 4, 14, 29mpbir3and 1180 1 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝐴 ∈ (SubMndβ€˜π‘€))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ↔ wb 105   ∧ w3a 978   = wceq 1353   ∈ wcel 2148   βŠ† wss 3131  β€˜cfv 5218  (class class class)co 5878  Basecbs 12465   β†Ύs cress 12466  0gc0g 12711  Mndcmnd 12823  SubMndcsubmnd 12856  mulGrpcmgp 13136  1rcur 13148  Ringcrg 13185  SubRingcsubrg 13344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-addcom 7914  ax-addass 7916  ax-i2m1 7919  ax-0lt1 7920  ax-0id 7922  ax-rnegex 7923  ax-pre-ltirr 7926  ax-pre-lttrn 7928  ax-pre-ltadd 7930
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-pnf 7997  df-mnf 7998  df-ltxr 8000  df-inn 8923  df-2 8981  df-3 8982  df-ndx 12468  df-slot 12469  df-base 12471  df-sets 12472  df-iress 12473  df-plusg 12552  df-mulr 12553  df-0g 12713  df-mgm 12781  df-sgrp 12814  df-mnd 12824  df-submnd 12858  df-mgp 13137  df-ur 13149  df-ring 13187  df-subrg 13346
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator