Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > shftidt2 | GIF version |
Description: Identity law for the shift operation. (Contributed by Mario Carneiro, 5-Nov-2013.) |
Ref | Expression |
---|---|
shftfval.1 | ⊢ 𝐹 ∈ V |
Ref | Expression |
---|---|
shftidt2 | ⊢ (𝐹 shift 0) = (𝐹 ↾ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subid1 8139 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (𝑥 − 0) = 𝑥) | |
2 | 1 | breq1d 3999 | . . . 4 ⊢ (𝑥 ∈ ℂ → ((𝑥 − 0)𝐹𝑦 ↔ 𝑥𝐹𝑦)) |
3 | 2 | pm5.32i 451 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ (𝑥 − 0)𝐹𝑦) ↔ (𝑥 ∈ ℂ ∧ 𝑥𝐹𝑦)) |
4 | 3 | opabbii 4056 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 0)𝐹𝑦)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑥𝐹𝑦)} |
5 | 0cn 7912 | . . 3 ⊢ 0 ∈ ℂ | |
6 | shftfval.1 | . . . 4 ⊢ 𝐹 ∈ V | |
7 | 6 | shftfval 10785 | . . 3 ⊢ (0 ∈ ℂ → (𝐹 shift 0) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 0)𝐹𝑦)}) |
8 | 5, 7 | ax-mp 5 | . 2 ⊢ (𝐹 shift 0) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 0)𝐹𝑦)} |
9 | dfres2 4943 | . 2 ⊢ (𝐹 ↾ ℂ) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑥𝐹𝑦)} | |
10 | 4, 8, 9 | 3eqtr4i 2201 | 1 ⊢ (𝐹 shift 0) = (𝐹 ↾ ℂ) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1348 ∈ wcel 2141 Vcvv 2730 class class class wbr 3989 {copab 4049 ↾ cres 4613 (class class class)co 5853 ℂcc 7772 0cc0 7774 − cmin 8090 shift cshi 10778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-resscn 7866 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-sub 8092 df-shft 10779 |
This theorem is referenced by: shftidt 10797 |
Copyright terms: Public domain | W3C validator |