![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > shftidt2 | GIF version |
Description: Identity law for the shift operation. (Contributed by Mario Carneiro, 5-Nov-2013.) |
Ref | Expression |
---|---|
shftfval.1 | ⊢ 𝐹 ∈ V |
Ref | Expression |
---|---|
shftidt2 | ⊢ (𝐹 shift 0) = (𝐹 ↾ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subid1 8241 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (𝑥 − 0) = 𝑥) | |
2 | 1 | breq1d 4040 | . . . 4 ⊢ (𝑥 ∈ ℂ → ((𝑥 − 0)𝐹𝑦 ↔ 𝑥𝐹𝑦)) |
3 | 2 | pm5.32i 454 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ (𝑥 − 0)𝐹𝑦) ↔ (𝑥 ∈ ℂ ∧ 𝑥𝐹𝑦)) |
4 | 3 | opabbii 4097 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 0)𝐹𝑦)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑥𝐹𝑦)} |
5 | 0cn 8013 | . . 3 ⊢ 0 ∈ ℂ | |
6 | shftfval.1 | . . . 4 ⊢ 𝐹 ∈ V | |
7 | 6 | shftfval 10968 | . . 3 ⊢ (0 ∈ ℂ → (𝐹 shift 0) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 0)𝐹𝑦)}) |
8 | 5, 7 | ax-mp 5 | . 2 ⊢ (𝐹 shift 0) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 0)𝐹𝑦)} |
9 | dfres2 4995 | . 2 ⊢ (𝐹 ↾ ℂ) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑥𝐹𝑦)} | |
10 | 4, 8, 9 | 3eqtr4i 2224 | 1 ⊢ (𝐹 shift 0) = (𝐹 ↾ ℂ) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2164 Vcvv 2760 class class class wbr 4030 {copab 4090 ↾ cres 4662 (class class class)co 5919 ℂcc 7872 0cc0 7874 − cmin 8192 shift cshi 10961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-resscn 7966 ax-1cn 7967 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-sub 8194 df-shft 10962 |
This theorem is referenced by: shftidt 10980 |
Copyright terms: Public domain | W3C validator |