| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > shftidt2 | GIF version | ||
| Description: Identity law for the shift operation. (Contributed by Mario Carneiro, 5-Nov-2013.) |
| Ref | Expression |
|---|---|
| shftfval.1 | ⊢ 𝐹 ∈ V |
| Ref | Expression |
|---|---|
| shftidt2 | ⊢ (𝐹 shift 0) = (𝐹 ↾ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subid1 8292 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (𝑥 − 0) = 𝑥) | |
| 2 | 1 | breq1d 4054 | . . . 4 ⊢ (𝑥 ∈ ℂ → ((𝑥 − 0)𝐹𝑦 ↔ 𝑥𝐹𝑦)) |
| 3 | 2 | pm5.32i 454 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ (𝑥 − 0)𝐹𝑦) ↔ (𝑥 ∈ ℂ ∧ 𝑥𝐹𝑦)) |
| 4 | 3 | opabbii 4111 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 0)𝐹𝑦)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑥𝐹𝑦)} |
| 5 | 0cn 8064 | . . 3 ⊢ 0 ∈ ℂ | |
| 6 | shftfval.1 | . . . 4 ⊢ 𝐹 ∈ V | |
| 7 | 6 | shftfval 11132 | . . 3 ⊢ (0 ∈ ℂ → (𝐹 shift 0) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 0)𝐹𝑦)}) |
| 8 | 5, 7 | ax-mp 5 | . 2 ⊢ (𝐹 shift 0) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 0)𝐹𝑦)} |
| 9 | dfres2 5011 | . 2 ⊢ (𝐹 ↾ ℂ) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑥𝐹𝑦)} | |
| 10 | 4, 8, 9 | 3eqtr4i 2236 | 1 ⊢ (𝐹 shift 0) = (𝐹 ↾ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2176 Vcvv 2772 class class class wbr 4044 {copab 4104 ↾ cres 4677 (class class class)co 5944 ℂcc 7923 0cc0 7925 − cmin 8243 shift cshi 11125 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-resscn 8017 ax-1cn 8018 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-sub 8245 df-shft 11126 |
| This theorem is referenced by: shftidt 11144 |
| Copyright terms: Public domain | W3C validator |