ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blpnfctr GIF version

Theorem blpnfctr 12422
Description: The infinity ball in an extended metric acts like an ultrametric ball in that every point in the ball is also its center. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
blpnfctr ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → (𝑃(ball‘𝐷)+∞) = (𝐴(ball‘𝐷)+∞))

Proof of Theorem blpnfctr
StepHypRef Expression
1 eqid 2113 . . . . 5 (𝐷 “ ℝ) = (𝐷 “ ℝ)
21xmeter 12419 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 “ ℝ) Er 𝑋)
323ad2ant1 983 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → (𝐷 “ ℝ) Er 𝑋)
4 simp3 964 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → 𝐴 ∈ (𝑃(ball‘𝐷)+∞))
51xmetec 12420 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → [𝑃](𝐷 “ ℝ) = (𝑃(ball‘𝐷)+∞))
653adant3 982 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → [𝑃](𝐷 “ ℝ) = (𝑃(ball‘𝐷)+∞))
74, 6eleqtrrd 2192 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → 𝐴 ∈ [𝑃](𝐷 “ ℝ))
8 elecg 6419 . . . . . 6 ((𝐴 ∈ (𝑃(ball‘𝐷)+∞) ∧ 𝑃𝑋) → (𝐴 ∈ [𝑃](𝐷 “ ℝ) ↔ 𝑃(𝐷 “ ℝ)𝐴))
98ancoms 266 . . . . 5 ((𝑃𝑋𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → (𝐴 ∈ [𝑃](𝐷 “ ℝ) ↔ 𝑃(𝐷 “ ℝ)𝐴))
1093adant1 980 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → (𝐴 ∈ [𝑃](𝐷 “ ℝ) ↔ 𝑃(𝐷 “ ℝ)𝐴))
117, 10mpbid 146 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → 𝑃(𝐷 “ ℝ)𝐴)
123, 11erthi 6427 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → [𝑃](𝐷 “ ℝ) = [𝐴](𝐷 “ ℝ))
13 pnfxr 7736 . . . . . 6 +∞ ∈ ℝ*
14 blssm 12404 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋 ∧ +∞ ∈ ℝ*) → (𝑃(ball‘𝐷)+∞) ⊆ 𝑋)
1513, 14mp3an3 1285 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑃(ball‘𝐷)+∞) ⊆ 𝑋)
1615sselda 3061 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → 𝐴𝑋)
171xmetec 12420 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋) → [𝐴](𝐷 “ ℝ) = (𝐴(ball‘𝐷)+∞))
1817adantlr 466 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝐴𝑋) → [𝐴](𝐷 “ ℝ) = (𝐴(ball‘𝐷)+∞))
1916, 18syldan 278 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → [𝐴](𝐷 “ ℝ) = (𝐴(ball‘𝐷)+∞))
20193impa 1157 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → [𝐴](𝐷 “ ℝ) = (𝐴(ball‘𝐷)+∞))
2112, 6, 203eqtr3d 2153 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → (𝑃(ball‘𝐷)+∞) = (𝐴(ball‘𝐷)+∞))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 943   = wceq 1312  wcel 1461  wss 3035   class class class wbr 3893  ccnv 4496  cima 4500  cfv 5079  (class class class)co 5726   Er wer 6378  [cec 6379  cr 7540  +∞cpnf 7715  *cxr 7717  ∞Metcxmet 11986  ballcbl 11988
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-cnex 7630  ax-resscn 7631  ax-1cn 7632  ax-1re 7633  ax-icn 7634  ax-addcl 7635  ax-addrcl 7636  ax-mulcl 7637  ax-mulrcl 7638  ax-addcom 7639  ax-mulcom 7640  ax-addass 7641  ax-mulass 7642  ax-distr 7643  ax-i2m1 7644  ax-0lt1 7645  ax-1rid 7646  ax-0id 7647  ax-rnegex 7648  ax-precex 7649  ax-cnre 7650  ax-pre-ltirr 7651  ax-pre-ltwlin 7652  ax-pre-lttrn 7653  ax-pre-apti 7654  ax-pre-ltadd 7655  ax-pre-mulgt0 7656
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-if 3439  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-id 4173  df-po 4176  df-iso 4177  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-1st 5990  df-2nd 5991  df-er 6381  df-ec 6383  df-map 6496  df-pnf 7720  df-mnf 7721  df-xr 7722  df-ltxr 7723  df-le 7724  df-sub 7852  df-neg 7853  df-2 8683  df-xadd 9447  df-psmet 11993  df-xmet 11994  df-bl 11996
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator