ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axicn GIF version

Theorem axicn 7344
Description: i is a complex number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-icn 7384. (Contributed by NM, 23-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axicn i ∈ ℂ

Proof of Theorem axicn
StepHypRef Expression
1 0r 7240 . 2 0RR
2 1sr 7241 . 2 1RR
3 df-i 7303 . . . 4 i = ⟨0R, 1R
43eleq1i 2150 . . 3 (i ∈ ℂ ↔ ⟨0R, 1R⟩ ∈ ℂ)
5 opelcn 7308 . . 3 (⟨0R, 1R⟩ ∈ ℂ ↔ (0RR ∧ 1RR))
64, 5bitri 182 . 2 (i ∈ ℂ ↔ (0RR ∧ 1RR))
71, 2, 6mpbir2an 886 1 i ∈ ℂ
Colors of variables: wff set class
Syntax hints:  wa 102  wcel 1436  cop 3434  Rcnr 6800  0Rc0r 6801  1Rc1r 6802  cc 7292  ici 7296
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3929  ax-sep 3932  ax-nul 3940  ax-pow 3984  ax-pr 4010  ax-un 4234  ax-setind 4326  ax-iinf 4376
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-int 3672  df-iun 3715  df-br 3821  df-opab 3875  df-mpt 3876  df-tr 3912  df-eprel 4090  df-id 4094  df-po 4097  df-iso 4098  df-iord 4167  df-on 4169  df-suc 4172  df-iom 4379  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-rn 4422  df-res 4423  df-ima 4424  df-iota 4946  df-fun 4983  df-fn 4984  df-f 4985  df-f1 4986  df-fo 4987  df-f1o 4988  df-fv 4989  df-ov 5616  df-oprab 5617  df-mpt2 5618  df-1st 5868  df-2nd 5869  df-recs 6024  df-irdg 6089  df-1o 6135  df-2o 6136  df-oadd 6139  df-omul 6140  df-er 6244  df-ec 6246  df-qs 6250  df-ni 6807  df-pli 6808  df-mi 6809  df-lti 6810  df-plpq 6847  df-mpq 6848  df-enq 6850  df-nqqs 6851  df-plqqs 6852  df-mqqs 6853  df-1nqqs 6854  df-rq 6855  df-ltnqqs 6856  df-enq0 6927  df-nq0 6928  df-0nq0 6929  df-plq0 6930  df-mq0 6931  df-inp 6969  df-i1p 6970  df-iplp 6971  df-enr 7216  df-nr 7217  df-0r 7221  df-1r 7222  df-c 7300  df-i 7303
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator