![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > srgfcl | GIF version |
Description: Functionality of the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by AV, 24-Aug-2021.) |
Ref | Expression |
---|---|
srgfcl.b | ⊢ 𝐵 = (Base‘𝑅) |
srgfcl.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
srgfcl | ⊢ ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → · :(𝐵 × 𝐵)⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 | . 2 ⊢ ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → · Fn (𝐵 × 𝐵)) | |
2 | srgfcl.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑅) | |
3 | srgfcl.t | . . . . . . . 8 ⊢ · = (.r‘𝑅) | |
4 | 2, 3 | srgcl 13469 | . . . . . . 7 ⊢ ((𝑅 ∈ SRing ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎 · 𝑏) ∈ 𝐵) |
5 | 4 | 3expb 1206 | . . . . . 6 ⊢ ((𝑅 ∈ SRing ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎 · 𝑏) ∈ 𝐵) |
6 | 5 | ralrimivva 2576 | . . . . 5 ⊢ (𝑅 ∈ SRing → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎 · 𝑏) ∈ 𝐵) |
7 | fveq2 5555 | . . . . . . . 8 ⊢ (𝑐 = 〈𝑎, 𝑏〉 → ( · ‘𝑐) = ( · ‘〈𝑎, 𝑏〉)) | |
8 | 7 | eleq1d 2262 | . . . . . . 7 ⊢ (𝑐 = 〈𝑎, 𝑏〉 → (( · ‘𝑐) ∈ 𝐵 ↔ ( · ‘〈𝑎, 𝑏〉) ∈ 𝐵)) |
9 | df-ov 5922 | . . . . . . . . 9 ⊢ (𝑎 · 𝑏) = ( · ‘〈𝑎, 𝑏〉) | |
10 | 9 | eqcomi 2197 | . . . . . . . 8 ⊢ ( · ‘〈𝑎, 𝑏〉) = (𝑎 · 𝑏) |
11 | 10 | eleq1i 2259 | . . . . . . 7 ⊢ (( · ‘〈𝑎, 𝑏〉) ∈ 𝐵 ↔ (𝑎 · 𝑏) ∈ 𝐵) |
12 | 8, 11 | bitrdi 196 | . . . . . 6 ⊢ (𝑐 = 〈𝑎, 𝑏〉 → (( · ‘𝑐) ∈ 𝐵 ↔ (𝑎 · 𝑏) ∈ 𝐵)) |
13 | 12 | ralxp 4806 | . . . . 5 ⊢ (∀𝑐 ∈ (𝐵 × 𝐵)( · ‘𝑐) ∈ 𝐵 ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎 · 𝑏) ∈ 𝐵) |
14 | 6, 13 | sylibr 134 | . . . 4 ⊢ (𝑅 ∈ SRing → ∀𝑐 ∈ (𝐵 × 𝐵)( · ‘𝑐) ∈ 𝐵) |
15 | 14 | adantr 276 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → ∀𝑐 ∈ (𝐵 × 𝐵)( · ‘𝑐) ∈ 𝐵) |
16 | fnfvrnss 5719 | . . 3 ⊢ (( · Fn (𝐵 × 𝐵) ∧ ∀𝑐 ∈ (𝐵 × 𝐵)( · ‘𝑐) ∈ 𝐵) → ran · ⊆ 𝐵) | |
17 | 1, 15, 16 | syl2anc 411 | . 2 ⊢ ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → ran · ⊆ 𝐵) |
18 | df-f 5259 | . 2 ⊢ ( · :(𝐵 × 𝐵)⟶𝐵 ↔ ( · Fn (𝐵 × 𝐵) ∧ ran · ⊆ 𝐵)) | |
19 | 1, 17, 18 | sylanbrc 417 | 1 ⊢ ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → · :(𝐵 × 𝐵)⟶𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ⊆ wss 3154 〈cop 3622 × cxp 4658 ran crn 4661 Fn wfn 5250 ⟶wf 5251 ‘cfv 5255 (class class class)co 5919 Basecbs 12621 .rcmulr 12699 SRingcsrg 13462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-ltirr 7986 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-inn 8985 df-2 9043 df-3 9044 df-ndx 12624 df-slot 12625 df-base 12627 df-sets 12628 df-plusg 12711 df-mulr 12712 df-0g 12872 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-mgp 13420 df-srg 13463 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |