Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > srgfcl | GIF version |
Description: Functionality of the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by AV, 24-Aug-2021.) |
Ref | Expression |
---|---|
srgfcl.b | ⊢ 𝐵 = (Base‘𝑅) |
srgfcl.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
srgfcl | ⊢ ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → · :(𝐵 × 𝐵)⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 | . 2 ⊢ ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → · Fn (𝐵 × 𝐵)) | |
2 | srgfcl.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑅) | |
3 | srgfcl.t | . . . . . . . 8 ⊢ · = (.r‘𝑅) | |
4 | 2, 3 | srgcl 12946 | . . . . . . 7 ⊢ ((𝑅 ∈ SRing ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎 · 𝑏) ∈ 𝐵) |
5 | 4 | 3expb 1204 | . . . . . 6 ⊢ ((𝑅 ∈ SRing ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎 · 𝑏) ∈ 𝐵) |
6 | 5 | ralrimivva 2557 | . . . . 5 ⊢ (𝑅 ∈ SRing → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎 · 𝑏) ∈ 𝐵) |
7 | fveq2 5507 | . . . . . . . 8 ⊢ (𝑐 = 〈𝑎, 𝑏〉 → ( · ‘𝑐) = ( · ‘〈𝑎, 𝑏〉)) | |
8 | 7 | eleq1d 2244 | . . . . . . 7 ⊢ (𝑐 = 〈𝑎, 𝑏〉 → (( · ‘𝑐) ∈ 𝐵 ↔ ( · ‘〈𝑎, 𝑏〉) ∈ 𝐵)) |
9 | df-ov 5868 | . . . . . . . . 9 ⊢ (𝑎 · 𝑏) = ( · ‘〈𝑎, 𝑏〉) | |
10 | 9 | eqcomi 2179 | . . . . . . . 8 ⊢ ( · ‘〈𝑎, 𝑏〉) = (𝑎 · 𝑏) |
11 | 10 | eleq1i 2241 | . . . . . . 7 ⊢ (( · ‘〈𝑎, 𝑏〉) ∈ 𝐵 ↔ (𝑎 · 𝑏) ∈ 𝐵) |
12 | 8, 11 | bitrdi 196 | . . . . . 6 ⊢ (𝑐 = 〈𝑎, 𝑏〉 → (( · ‘𝑐) ∈ 𝐵 ↔ (𝑎 · 𝑏) ∈ 𝐵)) |
13 | 12 | ralxp 4763 | . . . . 5 ⊢ (∀𝑐 ∈ (𝐵 × 𝐵)( · ‘𝑐) ∈ 𝐵 ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎 · 𝑏) ∈ 𝐵) |
14 | 6, 13 | sylibr 134 | . . . 4 ⊢ (𝑅 ∈ SRing → ∀𝑐 ∈ (𝐵 × 𝐵)( · ‘𝑐) ∈ 𝐵) |
15 | 14 | adantr 276 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → ∀𝑐 ∈ (𝐵 × 𝐵)( · ‘𝑐) ∈ 𝐵) |
16 | fnfvrnss 5668 | . . 3 ⊢ (( · Fn (𝐵 × 𝐵) ∧ ∀𝑐 ∈ (𝐵 × 𝐵)( · ‘𝑐) ∈ 𝐵) → ran · ⊆ 𝐵) | |
17 | 1, 15, 16 | syl2anc 411 | . 2 ⊢ ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → ran · ⊆ 𝐵) |
18 | df-f 5212 | . 2 ⊢ ( · :(𝐵 × 𝐵)⟶𝐵 ↔ ( · Fn (𝐵 × 𝐵) ∧ ran · ⊆ 𝐵)) | |
19 | 1, 17, 18 | sylanbrc 417 | 1 ⊢ ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → · :(𝐵 × 𝐵)⟶𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2146 ∀wral 2453 ⊆ wss 3127 〈cop 3592 × cxp 4618 ran crn 4621 Fn wfn 5203 ⟶wf 5204 ‘cfv 5208 (class class class)co 5865 Basecbs 12428 .rcmulr 12493 SRingcsrg 12939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-pre-ltirr 7898 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-ltxr 7971 df-inn 8891 df-2 8949 df-3 8950 df-ndx 12431 df-slot 12432 df-base 12434 df-sets 12435 df-plusg 12505 df-mulr 12506 df-0g 12628 df-mgm 12640 df-sgrp 12673 df-mnd 12683 df-mgp 12926 df-srg 12940 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |