ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgfcl GIF version

Theorem srgfcl 13469
Description: Functionality of the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by AV, 24-Aug-2021.)
Hypotheses
Ref Expression
srgfcl.b 𝐵 = (Base‘𝑅)
srgfcl.t · = (.r𝑅)
Assertion
Ref Expression
srgfcl ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → · :(𝐵 × 𝐵)⟶𝐵)

Proof of Theorem srgfcl
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . 2 ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → · Fn (𝐵 × 𝐵))
2 srgfcl.b . . . . . . . 8 𝐵 = (Base‘𝑅)
3 srgfcl.t . . . . . . . 8 · = (.r𝑅)
42, 3srgcl 13466 . . . . . . 7 ((𝑅 ∈ SRing ∧ 𝑎𝐵𝑏𝐵) → (𝑎 · 𝑏) ∈ 𝐵)
543expb 1206 . . . . . 6 ((𝑅 ∈ SRing ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 · 𝑏) ∈ 𝐵)
65ralrimivva 2576 . . . . 5 (𝑅 ∈ SRing → ∀𝑎𝐵𝑏𝐵 (𝑎 · 𝑏) ∈ 𝐵)
7 fveq2 5554 . . . . . . . 8 (𝑐 = ⟨𝑎, 𝑏⟩ → ( ·𝑐) = ( · ‘⟨𝑎, 𝑏⟩))
87eleq1d 2262 . . . . . . 7 (𝑐 = ⟨𝑎, 𝑏⟩ → (( ·𝑐) ∈ 𝐵 ↔ ( · ‘⟨𝑎, 𝑏⟩) ∈ 𝐵))
9 df-ov 5921 . . . . . . . . 9 (𝑎 · 𝑏) = ( · ‘⟨𝑎, 𝑏⟩)
109eqcomi 2197 . . . . . . . 8 ( · ‘⟨𝑎, 𝑏⟩) = (𝑎 · 𝑏)
1110eleq1i 2259 . . . . . . 7 (( · ‘⟨𝑎, 𝑏⟩) ∈ 𝐵 ↔ (𝑎 · 𝑏) ∈ 𝐵)
128, 11bitrdi 196 . . . . . 6 (𝑐 = ⟨𝑎, 𝑏⟩ → (( ·𝑐) ∈ 𝐵 ↔ (𝑎 · 𝑏) ∈ 𝐵))
1312ralxp 4805 . . . . 5 (∀𝑐 ∈ (𝐵 × 𝐵)( ·𝑐) ∈ 𝐵 ↔ ∀𝑎𝐵𝑏𝐵 (𝑎 · 𝑏) ∈ 𝐵)
146, 13sylibr 134 . . . 4 (𝑅 ∈ SRing → ∀𝑐 ∈ (𝐵 × 𝐵)( ·𝑐) ∈ 𝐵)
1514adantr 276 . . 3 ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → ∀𝑐 ∈ (𝐵 × 𝐵)( ·𝑐) ∈ 𝐵)
16 fnfvrnss 5718 . . 3 (( · Fn (𝐵 × 𝐵) ∧ ∀𝑐 ∈ (𝐵 × 𝐵)( ·𝑐) ∈ 𝐵) → ran ·𝐵)
171, 15, 16syl2anc 411 . 2 ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → ran ·𝐵)
18 df-f 5258 . 2 ( · :(𝐵 × 𝐵)⟶𝐵 ↔ ( · Fn (𝐵 × 𝐵) ∧ ran ·𝐵))
191, 17, 18sylanbrc 417 1 ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → · :(𝐵 × 𝐵)⟶𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wral 2472  wss 3153  cop 3621   × cxp 4657  ran crn 4660   Fn wfn 5249  wf 5250  cfv 5254  (class class class)co 5918  Basecbs 12618  .rcmulr 12696  SRingcsrg 13459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-mgp 13417  df-srg 13460
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator