| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > srgfcl | GIF version | ||
| Description: Functionality of the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by AV, 24-Aug-2021.) |
| Ref | Expression |
|---|---|
| srgfcl.b | ⊢ 𝐵 = (Base‘𝑅) |
| srgfcl.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| srgfcl | ⊢ ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → · :(𝐵 × 𝐵)⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . 2 ⊢ ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → · Fn (𝐵 × 𝐵)) | |
| 2 | srgfcl.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | srgfcl.t | . . . . . . . 8 ⊢ · = (.r‘𝑅) | |
| 4 | 2, 3 | srgcl 13674 | . . . . . . 7 ⊢ ((𝑅 ∈ SRing ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎 · 𝑏) ∈ 𝐵) |
| 5 | 4 | 3expb 1206 | . . . . . 6 ⊢ ((𝑅 ∈ SRing ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎 · 𝑏) ∈ 𝐵) |
| 6 | 5 | ralrimivva 2587 | . . . . 5 ⊢ (𝑅 ∈ SRing → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎 · 𝑏) ∈ 𝐵) |
| 7 | fveq2 5575 | . . . . . . . 8 ⊢ (𝑐 = 〈𝑎, 𝑏〉 → ( · ‘𝑐) = ( · ‘〈𝑎, 𝑏〉)) | |
| 8 | 7 | eleq1d 2273 | . . . . . . 7 ⊢ (𝑐 = 〈𝑎, 𝑏〉 → (( · ‘𝑐) ∈ 𝐵 ↔ ( · ‘〈𝑎, 𝑏〉) ∈ 𝐵)) |
| 9 | df-ov 5946 | . . . . . . . . 9 ⊢ (𝑎 · 𝑏) = ( · ‘〈𝑎, 𝑏〉) | |
| 10 | 9 | eqcomi 2208 | . . . . . . . 8 ⊢ ( · ‘〈𝑎, 𝑏〉) = (𝑎 · 𝑏) |
| 11 | 10 | eleq1i 2270 | . . . . . . 7 ⊢ (( · ‘〈𝑎, 𝑏〉) ∈ 𝐵 ↔ (𝑎 · 𝑏) ∈ 𝐵) |
| 12 | 8, 11 | bitrdi 196 | . . . . . 6 ⊢ (𝑐 = 〈𝑎, 𝑏〉 → (( · ‘𝑐) ∈ 𝐵 ↔ (𝑎 · 𝑏) ∈ 𝐵)) |
| 13 | 12 | ralxp 4820 | . . . . 5 ⊢ (∀𝑐 ∈ (𝐵 × 𝐵)( · ‘𝑐) ∈ 𝐵 ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎 · 𝑏) ∈ 𝐵) |
| 14 | 6, 13 | sylibr 134 | . . . 4 ⊢ (𝑅 ∈ SRing → ∀𝑐 ∈ (𝐵 × 𝐵)( · ‘𝑐) ∈ 𝐵) |
| 15 | 14 | adantr 276 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → ∀𝑐 ∈ (𝐵 × 𝐵)( · ‘𝑐) ∈ 𝐵) |
| 16 | fnfvrnss 5739 | . . 3 ⊢ (( · Fn (𝐵 × 𝐵) ∧ ∀𝑐 ∈ (𝐵 × 𝐵)( · ‘𝑐) ∈ 𝐵) → ran · ⊆ 𝐵) | |
| 17 | 1, 15, 16 | syl2anc 411 | . 2 ⊢ ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → ran · ⊆ 𝐵) |
| 18 | df-f 5274 | . 2 ⊢ ( · :(𝐵 × 𝐵)⟶𝐵 ↔ ( · Fn (𝐵 × 𝐵) ∧ ran · ⊆ 𝐵)) | |
| 19 | 1, 17, 18 | sylanbrc 417 | 1 ⊢ ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → · :(𝐵 × 𝐵)⟶𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 ∀wral 2483 ⊆ wss 3165 〈cop 3635 × cxp 4672 ran crn 4675 Fn wfn 5265 ⟶wf 5266 ‘cfv 5270 (class class class)co 5943 Basecbs 12774 .rcmulr 12852 SRingcsrg 13667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-pre-ltirr 8036 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-ltxr 8111 df-inn 9036 df-2 9094 df-3 9095 df-ndx 12777 df-slot 12778 df-base 12780 df-sets 12781 df-plusg 12864 df-mulr 12865 df-0g 13032 df-mgm 13130 df-sgrp 13176 df-mnd 13191 df-mgp 13625 df-srg 13668 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |