ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgfcl GIF version

Theorem srgfcl 12949
Description: Functionality of the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by AV, 24-Aug-2021.)
Hypotheses
Ref Expression
srgfcl.b 𝐵 = (Base‘𝑅)
srgfcl.t · = (.r𝑅)
Assertion
Ref Expression
srgfcl ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → · :(𝐵 × 𝐵)⟶𝐵)

Proof of Theorem srgfcl
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . 2 ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → · Fn (𝐵 × 𝐵))
2 srgfcl.b . . . . . . . 8 𝐵 = (Base‘𝑅)
3 srgfcl.t . . . . . . . 8 · = (.r𝑅)
42, 3srgcl 12946 . . . . . . 7 ((𝑅 ∈ SRing ∧ 𝑎𝐵𝑏𝐵) → (𝑎 · 𝑏) ∈ 𝐵)
543expb 1204 . . . . . 6 ((𝑅 ∈ SRing ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 · 𝑏) ∈ 𝐵)
65ralrimivva 2557 . . . . 5 (𝑅 ∈ SRing → ∀𝑎𝐵𝑏𝐵 (𝑎 · 𝑏) ∈ 𝐵)
7 fveq2 5507 . . . . . . . 8 (𝑐 = ⟨𝑎, 𝑏⟩ → ( ·𝑐) = ( · ‘⟨𝑎, 𝑏⟩))
87eleq1d 2244 . . . . . . 7 (𝑐 = ⟨𝑎, 𝑏⟩ → (( ·𝑐) ∈ 𝐵 ↔ ( · ‘⟨𝑎, 𝑏⟩) ∈ 𝐵))
9 df-ov 5868 . . . . . . . . 9 (𝑎 · 𝑏) = ( · ‘⟨𝑎, 𝑏⟩)
109eqcomi 2179 . . . . . . . 8 ( · ‘⟨𝑎, 𝑏⟩) = (𝑎 · 𝑏)
1110eleq1i 2241 . . . . . . 7 (( · ‘⟨𝑎, 𝑏⟩) ∈ 𝐵 ↔ (𝑎 · 𝑏) ∈ 𝐵)
128, 11bitrdi 196 . . . . . 6 (𝑐 = ⟨𝑎, 𝑏⟩ → (( ·𝑐) ∈ 𝐵 ↔ (𝑎 · 𝑏) ∈ 𝐵))
1312ralxp 4763 . . . . 5 (∀𝑐 ∈ (𝐵 × 𝐵)( ·𝑐) ∈ 𝐵 ↔ ∀𝑎𝐵𝑏𝐵 (𝑎 · 𝑏) ∈ 𝐵)
146, 13sylibr 134 . . . 4 (𝑅 ∈ SRing → ∀𝑐 ∈ (𝐵 × 𝐵)( ·𝑐) ∈ 𝐵)
1514adantr 276 . . 3 ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → ∀𝑐 ∈ (𝐵 × 𝐵)( ·𝑐) ∈ 𝐵)
16 fnfvrnss 5668 . . 3 (( · Fn (𝐵 × 𝐵) ∧ ∀𝑐 ∈ (𝐵 × 𝐵)( ·𝑐) ∈ 𝐵) → ran ·𝐵)
171, 15, 16syl2anc 411 . 2 ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → ran ·𝐵)
18 df-f 5212 . 2 ( · :(𝐵 × 𝐵)⟶𝐵 ↔ ( · Fn (𝐵 × 𝐵) ∧ ran ·𝐵))
191, 17, 18sylanbrc 417 1 ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → · :(𝐵 × 𝐵)⟶𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2146  wral 2453  wss 3127  cop 3592   × cxp 4618  ran crn 4621   Fn wfn 5203  wf 5204  cfv 5208  (class class class)co 5865  Basecbs 12428  .rcmulr 12493  SRingcsrg 12939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-pre-ltirr 7898  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-pnf 7968  df-mnf 7969  df-ltxr 7971  df-inn 8891  df-2 8949  df-3 8950  df-ndx 12431  df-slot 12432  df-base 12434  df-sets 12435  df-plusg 12505  df-mulr 12506  df-0g 12628  df-mgm 12640  df-sgrp 12673  df-mnd 12683  df-mgp 12926  df-srg 12940
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator