ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpod GIF version

Theorem ovmpod 6138
Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
ovmpod.1 (𝜑𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))
ovmpod.2 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
ovmpod.3 (𝜑𝐴𝐶)
ovmpod.4 (𝜑𝐵𝐷)
ovmpod.5 (𝜑𝑆𝑋)
Assertion
Ref Expression
ovmpod (𝜑 → (𝐴𝐹𝐵) = 𝑆)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem ovmpod
StepHypRef Expression
1 ovmpod.1 . 2 (𝜑𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))
2 ovmpod.2 . 2 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
3 eqidd 2230 . 2 ((𝜑𝑥 = 𝐴) → 𝐷 = 𝐷)
4 ovmpod.3 . 2 (𝜑𝐴𝐶)
5 ovmpod.4 . 2 (𝜑𝐵𝐷)
6 ovmpod.5 . 2 (𝜑𝑆𝑋)
71, 2, 3, 4, 5, 6ovmpodx 6137 1 (𝜑 → (𝐴𝐹𝐵) = 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  (class class class)co 6007  cmpo 6009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012
This theorem is referenced by:  ovmpoga  6140  fvmpopr2d  6147  elovmpod  6209  iseqovex  10688  seqvalcd  10691  swrdval  11188  pfxval  11214  resqrexlemp1rp  11525  resqrexlemfp1  11528  lcmval  12593  ennnfonelemg  12982  prdsval  13314  prdsplusgval  13324  prdsmulrval  13326  imasival  13347  qusval  13364  plusfvalg  13404  igsumvalx  13430  grpsubval  13587  mulgval  13667  dvrvald  14106  isrim0  14133  rhmval  14145  scafvalg  14279  rmodislmodlem  14322  rmodislmod  14323  psrval  14638  cnfval  14876  cnpfval  14877  blvalps  15070  blval  15071
  Copyright terms: Public domain W3C validator