| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovmpod | GIF version | ||
| Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| ovmpod.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)) |
| ovmpod.2 | ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) |
| ovmpod.3 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| ovmpod.4 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
| ovmpod.5 | ⊢ (𝜑 → 𝑆 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| ovmpod | ⊢ (𝜑 → (𝐴𝐹𝐵) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpod.1 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)) | |
| 2 | ovmpod.2 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) | |
| 3 | eqidd 2230 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐷 = 𝐷) | |
| 4 | ovmpod.3 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
| 5 | ovmpod.4 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
| 6 | ovmpod.5 | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝑋) | |
| 7 | 1, 2, 3, 4, 5, 6 | ovmpodx 6122 | 1 ⊢ (𝜑 → (𝐴𝐹𝐵) = 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 (class class class)co 5994 ∈ cmpo 5996 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-setind 4626 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-iota 5274 df-fun 5316 df-fv 5322 df-ov 5997 df-oprab 5998 df-mpo 5999 |
| This theorem is referenced by: ovmpoga 6125 fvmpopr2d 6132 elovmpod 6194 iseqovex 10667 seqvalcd 10670 swrdval 11166 pfxval 11192 resqrexlemp1rp 11503 resqrexlemfp1 11506 lcmval 12571 ennnfonelemg 12960 prdsval 13292 prdsplusgval 13302 prdsmulrval 13304 imasival 13325 qusval 13342 plusfvalg 13382 igsumvalx 13408 grpsubval 13565 mulgval 13645 dvrvald 14083 isrim0 14110 rhmval 14122 scafvalg 14256 rmodislmodlem 14299 rmodislmod 14300 psrval 14615 cnfval 14853 cnpfval 14854 blvalps 15047 blval 15048 |
| Copyright terms: Public domain | W3C validator |