Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ovmpod | GIF version |
Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 7-Dec-2014.) |
Ref | Expression |
---|---|
ovmpod.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)) |
ovmpod.2 | ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) |
ovmpod.3 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
ovmpod.4 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
ovmpod.5 | ⊢ (𝜑 → 𝑆 ∈ 𝑋) |
Ref | Expression |
---|---|
ovmpod | ⊢ (𝜑 → (𝐴𝐹𝐵) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovmpod.1 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)) | |
2 | ovmpod.2 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) | |
3 | eqidd 2166 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐷 = 𝐷) | |
4 | ovmpod.3 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
5 | ovmpod.4 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
6 | ovmpod.5 | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝑋) | |
7 | 1, 2, 3, 4, 5, 6 | ovmpodx 5968 | 1 ⊢ (𝜑 → (𝐴𝐹𝐵) = 𝑆) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 (class class class)co 5842 ∈ cmpo 5844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 |
This theorem is referenced by: ovmpoga 5971 iseqovex 10391 seqvalcd 10394 resqrexlemp1rp 10948 resqrexlemfp1 10951 lcmval 11995 ennnfonelemg 12336 plusfvalg 12594 cnfval 12844 cnpfval 12845 blvalps 13038 blval 13039 |
Copyright terms: Public domain | W3C validator |