ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpod GIF version

Theorem ovmpod 5969
Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
ovmpod.1 (𝜑𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))
ovmpod.2 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
ovmpod.3 (𝜑𝐴𝐶)
ovmpod.4 (𝜑𝐵𝐷)
ovmpod.5 (𝜑𝑆𝑋)
Assertion
Ref Expression
ovmpod (𝜑 → (𝐴𝐹𝐵) = 𝑆)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem ovmpod
StepHypRef Expression
1 ovmpod.1 . 2 (𝜑𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))
2 ovmpod.2 . 2 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
3 eqidd 2166 . 2 ((𝜑𝑥 = 𝐴) → 𝐷 = 𝐷)
4 ovmpod.3 . 2 (𝜑𝐴𝐶)
5 ovmpod.4 . 2 (𝜑𝐵𝐷)
6 ovmpod.5 . 2 (𝜑𝑆𝑋)
71, 2, 3, 4, 5, 6ovmpodx 5968 1 (𝜑 → (𝐴𝐹𝐵) = 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  (class class class)co 5842  cmpo 5844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847
This theorem is referenced by:  ovmpoga  5971  iseqovex  10391  seqvalcd  10394  resqrexlemp1rp  10948  resqrexlemfp1  10951  lcmval  11995  ennnfonelemg  12336  plusfvalg  12594  cnfval  12844  cnpfval  12845  blvalps  13038  blval  13039
  Copyright terms: Public domain W3C validator