| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovmpod | GIF version | ||
| Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| ovmpod.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)) |
| ovmpod.2 | ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) |
| ovmpod.3 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| ovmpod.4 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
| ovmpod.5 | ⊢ (𝜑 → 𝑆 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| ovmpod | ⊢ (𝜑 → (𝐴𝐹𝐵) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpod.1 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)) | |
| 2 | ovmpod.2 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) | |
| 3 | eqidd 2197 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐷 = 𝐷) | |
| 4 | ovmpod.3 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
| 5 | ovmpod.4 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
| 6 | ovmpod.5 | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝑋) | |
| 7 | 1, 2, 3, 4, 5, 6 | ovmpodx 6053 | 1 ⊢ (𝜑 → (𝐴𝐹𝐵) = 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ∈ cmpo 5927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 |
| This theorem is referenced by: ovmpoga 6056 fvmpopr2d 6063 elovmpod 6125 iseqovex 10569 seqvalcd 10572 resqrexlemp1rp 11190 resqrexlemfp1 11193 lcmval 12258 ennnfonelemg 12647 prdsval 12977 prdsplusgval 12987 prdsmulrval 12989 imasival 13010 qusval 13027 plusfvalg 13067 igsumvalx 13093 grpsubval 13250 mulgval 13330 dvrvald 13768 isrim0 13795 rhmval 13807 scafvalg 13941 rmodislmodlem 13984 rmodislmod 13985 psrval 14300 cnfval 14538 cnpfval 14539 blvalps 14732 blval 14733 |
| Copyright terms: Public domain | W3C validator |