| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovmpod | GIF version | ||
| Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| ovmpod.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)) |
| ovmpod.2 | ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) |
| ovmpod.3 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| ovmpod.4 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
| ovmpod.5 | ⊢ (𝜑 → 𝑆 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| ovmpod | ⊢ (𝜑 → (𝐴𝐹𝐵) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpod.1 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)) | |
| 2 | ovmpod.2 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) | |
| 3 | eqidd 2230 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐷 = 𝐷) | |
| 4 | ovmpod.3 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
| 5 | ovmpod.4 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
| 6 | ovmpod.5 | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝑋) | |
| 7 | 1, 2, 3, 4, 5, 6 | ovmpodx 6137 | 1 ⊢ (𝜑 → (𝐴𝐹𝐵) = 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 (class class class)co 6007 ∈ cmpo 6009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 |
| This theorem is referenced by: ovmpoga 6140 fvmpopr2d 6147 elovmpod 6209 iseqovex 10688 seqvalcd 10691 swrdval 11188 pfxval 11214 resqrexlemp1rp 11525 resqrexlemfp1 11528 lcmval 12593 ennnfonelemg 12982 prdsval 13314 prdsplusgval 13324 prdsmulrval 13326 imasival 13347 qusval 13364 plusfvalg 13404 igsumvalx 13430 grpsubval 13587 mulgval 13667 dvrvald 14106 isrim0 14133 rhmval 14145 scafvalg 14279 rmodislmodlem 14322 rmodislmod 14323 psrval 14638 cnfval 14876 cnpfval 14877 blvalps 15070 blval 15071 |
| Copyright terms: Public domain | W3C validator |