| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrpd | GIF version | ||
| Description: Membership in the set of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| elrpd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| elrpd.2 | ⊢ (𝜑 → 0 < 𝐴) |
| Ref | Expression |
|---|---|
| elrpd | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrpd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | elrpd.2 | . 2 ⊢ (𝜑 → 0 < 𝐴) | |
| 3 | elrp 9847 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 4 | 1, 2, 3 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 class class class wbr 4082 ℝcr 7994 0cc0 7995 < clt 8177 ℝ+crp 9845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-rp 9846 |
| This theorem is referenced by: mul2lt0rgt0 9952 mul2lt0np 9955 zltaddlt1le 10199 modqval 10541 ltexp2a 10808 leexp2a 10809 expnlbnd2 10882 nn0ltexp2 10926 resqrexlem1arp 11511 resqrexlemp1rp 11512 resqrexlemcalc2 11521 resqrexlemcalc3 11522 resqrexlemgt0 11526 resqrexlemglsq 11528 rpsqrtcl 11547 absrpclap 11567 rpmaxcl 11729 rpmincl 11744 xrminrpcl 11780 xrbdtri 11782 mulcn2 11818 reccn2ap 11819 climge0 11831 divcnv 12003 georeclim 12019 cvgratnnlembern 12029 cvgratnnlemsumlt 12034 cvgratnnlemfm 12035 cvgratnnlemrate 12036 cvgratnn 12037 cvgratz 12038 rpefcl 12191 efltim 12204 ef01bndlem 12262 pythagtriplem12 12793 pythagtriplem14 12795 pythagtriplem16 12797 bdmopn 15172 mulcncflem 15275 ivthinclemlopn 15304 ivthinclemuopn 15306 dveflem 15394 reeff1olem 15439 pilem3 15451 tanrpcl 15505 cosordlem 15517 rplogcl 15547 logdivlti 15549 cxplt 15584 cxple 15585 rpabscxpbnd 15608 ltexp2 15609 iooref1o 16361 |
| Copyright terms: Public domain | W3C validator |