![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elrpd | GIF version |
Description: Membership in the set of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
elrpd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
elrpd.2 | ⊢ (𝜑 → 0 < 𝐴) |
Ref | Expression |
---|---|
elrpd | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrpd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | elrpd.2 | . 2 ⊢ (𝜑 → 0 < 𝐴) | |
3 | elrp 9724 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
4 | 1, 2, 3 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 class class class wbr 4030 ℝcr 7873 0cc0 7874 < clt 8056 ℝ+crp 9722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rab 2481 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-rp 9723 |
This theorem is referenced by: mul2lt0rgt0 9829 mul2lt0np 9832 zltaddlt1le 10076 modqval 10398 ltexp2a 10665 leexp2a 10666 expnlbnd2 10739 nn0ltexp2 10783 resqrexlem1arp 11152 resqrexlemp1rp 11153 resqrexlemcalc2 11162 resqrexlemcalc3 11163 resqrexlemgt0 11167 resqrexlemglsq 11169 rpsqrtcl 11188 absrpclap 11208 rpmaxcl 11370 rpmincl 11384 xrminrpcl 11420 xrbdtri 11422 mulcn2 11458 reccn2ap 11459 climge0 11471 divcnv 11643 georeclim 11659 cvgratnnlembern 11669 cvgratnnlemsumlt 11674 cvgratnnlemfm 11675 cvgratnnlemrate 11676 cvgratnn 11677 cvgratz 11678 rpefcl 11831 efltim 11844 ef01bndlem 11902 pythagtriplem12 12416 pythagtriplem14 12418 pythagtriplem16 12420 bdmopn 14683 mulcncflem 14786 ivthinclemlopn 14815 ivthinclemuopn 14817 dveflem 14905 reeff1olem 14947 pilem3 14959 tanrpcl 15013 cosordlem 15025 rplogcl 15055 logdivlti 15057 cxplt 15091 cxple 15092 rpabscxpbnd 15114 ltexp2 15115 iooref1o 15594 |
Copyright terms: Public domain | W3C validator |