| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrpd | GIF version | ||
| Description: Membership in the set of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| elrpd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| elrpd.2 | ⊢ (𝜑 → 0 < 𝐴) |
| Ref | Expression |
|---|---|
| elrpd | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrpd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | elrpd.2 | . 2 ⊢ (𝜑 → 0 < 𝐴) | |
| 3 | elrp 9730 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 4 | 1, 2, 3 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 class class class wbr 4033 ℝcr 7878 0cc0 7879 < clt 8061 ℝ+crp 9728 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-rp 9729 |
| This theorem is referenced by: mul2lt0rgt0 9835 mul2lt0np 9838 zltaddlt1le 10082 modqval 10416 ltexp2a 10683 leexp2a 10684 expnlbnd2 10757 nn0ltexp2 10801 resqrexlem1arp 11170 resqrexlemp1rp 11171 resqrexlemcalc2 11180 resqrexlemcalc3 11181 resqrexlemgt0 11185 resqrexlemglsq 11187 rpsqrtcl 11206 absrpclap 11226 rpmaxcl 11388 rpmincl 11403 xrminrpcl 11439 xrbdtri 11441 mulcn2 11477 reccn2ap 11478 climge0 11490 divcnv 11662 georeclim 11678 cvgratnnlembern 11688 cvgratnnlemsumlt 11693 cvgratnnlemfm 11694 cvgratnnlemrate 11695 cvgratnn 11696 cvgratz 11697 rpefcl 11850 efltim 11863 ef01bndlem 11921 pythagtriplem12 12444 pythagtriplem14 12446 pythagtriplem16 12448 bdmopn 14740 mulcncflem 14843 ivthinclemlopn 14872 ivthinclemuopn 14874 dveflem 14962 reeff1olem 15007 pilem3 15019 tanrpcl 15073 cosordlem 15085 rplogcl 15115 logdivlti 15117 cxplt 15152 cxple 15153 rpabscxpbnd 15176 ltexp2 15177 iooref1o 15678 |
| Copyright terms: Public domain | W3C validator |