Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elrpd | GIF version |
Description: Membership in the set of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
elrpd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
elrpd.2 | ⊢ (𝜑 → 0 < 𝐴) |
Ref | Expression |
---|---|
elrpd | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrpd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | elrpd.2 | . 2 ⊢ (𝜑 → 0 < 𝐴) | |
3 | elrp 9612 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
4 | 1, 2, 3 | sylanbrc 415 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 class class class wbr 3989 ℝcr 7773 0cc0 7774 < clt 7954 ℝ+crp 9610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rab 2457 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-rp 9611 |
This theorem is referenced by: mul2lt0rgt0 9717 mul2lt0np 9720 zltaddlt1le 9964 modqval 10280 ltexp2a 10528 leexp2a 10529 expnlbnd2 10601 nn0ltexp2 10644 resqrexlem1arp 10969 resqrexlemp1rp 10970 resqrexlemcalc2 10979 resqrexlemcalc3 10980 resqrexlemgt0 10984 resqrexlemglsq 10986 rpsqrtcl 11005 absrpclap 11025 rpmaxcl 11187 rpmincl 11201 xrminrpcl 11237 xrbdtri 11239 mulcn2 11275 reccn2ap 11276 climge0 11288 divcnv 11460 georeclim 11476 cvgratnnlembern 11486 cvgratnnlemsumlt 11491 cvgratnnlemfm 11492 cvgratnnlemrate 11493 cvgratnn 11494 cvgratz 11495 rpefcl 11648 efltim 11661 ef01bndlem 11719 pythagtriplem12 12229 pythagtriplem14 12231 pythagtriplem16 12233 bdmopn 13298 mulcncflem 13384 ivthinclemlopn 13408 ivthinclemuopn 13410 dveflem 13481 reeff1olem 13486 pilem3 13498 tanrpcl 13552 cosordlem 13564 rplogcl 13594 logdivlti 13596 cxplt 13630 cxple 13631 rpabscxpbnd 13653 ltexp2 13654 iooref1o 14066 |
Copyright terms: Public domain | W3C validator |