| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrpd | GIF version | ||
| Description: Membership in the set of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| elrpd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| elrpd.2 | ⊢ (𝜑 → 0 < 𝐴) |
| Ref | Expression |
|---|---|
| elrpd | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrpd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | elrpd.2 | . 2 ⊢ (𝜑 → 0 < 𝐴) | |
| 3 | elrp 9812 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 4 | 1, 2, 3 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2178 class class class wbr 4059 ℝcr 7959 0cc0 7960 < clt 8142 ℝ+crp 9810 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rab 2495 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-rp 9811 |
| This theorem is referenced by: mul2lt0rgt0 9917 mul2lt0np 9920 zltaddlt1le 10164 modqval 10506 ltexp2a 10773 leexp2a 10774 expnlbnd2 10847 nn0ltexp2 10891 resqrexlem1arp 11431 resqrexlemp1rp 11432 resqrexlemcalc2 11441 resqrexlemcalc3 11442 resqrexlemgt0 11446 resqrexlemglsq 11448 rpsqrtcl 11467 absrpclap 11487 rpmaxcl 11649 rpmincl 11664 xrminrpcl 11700 xrbdtri 11702 mulcn2 11738 reccn2ap 11739 climge0 11751 divcnv 11923 georeclim 11939 cvgratnnlembern 11949 cvgratnnlemsumlt 11954 cvgratnnlemfm 11955 cvgratnnlemrate 11956 cvgratnn 11957 cvgratz 11958 rpefcl 12111 efltim 12124 ef01bndlem 12182 pythagtriplem12 12713 pythagtriplem14 12715 pythagtriplem16 12717 bdmopn 15091 mulcncflem 15194 ivthinclemlopn 15223 ivthinclemuopn 15225 dveflem 15313 reeff1olem 15358 pilem3 15370 tanrpcl 15424 cosordlem 15436 rplogcl 15466 logdivlti 15468 cxplt 15503 cxple 15504 rpabscxpbnd 15527 ltexp2 15528 iooref1o 16175 |
| Copyright terms: Public domain | W3C validator |