| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrpd | GIF version | ||
| Description: Membership in the set of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| elrpd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| elrpd.2 | ⊢ (𝜑 → 0 < 𝐴) |
| Ref | Expression |
|---|---|
| elrpd | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrpd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | elrpd.2 | . 2 ⊢ (𝜑 → 0 < 𝐴) | |
| 3 | elrp 9747 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 4 | 1, 2, 3 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 class class class wbr 4034 ℝcr 7895 0cc0 7896 < clt 8078 ℝ+crp 9745 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-rp 9746 |
| This theorem is referenced by: mul2lt0rgt0 9852 mul2lt0np 9855 zltaddlt1le 10099 modqval 10433 ltexp2a 10700 leexp2a 10701 expnlbnd2 10774 nn0ltexp2 10818 resqrexlem1arp 11187 resqrexlemp1rp 11188 resqrexlemcalc2 11197 resqrexlemcalc3 11198 resqrexlemgt0 11202 resqrexlemglsq 11204 rpsqrtcl 11223 absrpclap 11243 rpmaxcl 11405 rpmincl 11420 xrminrpcl 11456 xrbdtri 11458 mulcn2 11494 reccn2ap 11495 climge0 11507 divcnv 11679 georeclim 11695 cvgratnnlembern 11705 cvgratnnlemsumlt 11710 cvgratnnlemfm 11711 cvgratnnlemrate 11712 cvgratnn 11713 cvgratz 11714 rpefcl 11867 efltim 11880 ef01bndlem 11938 pythagtriplem12 12469 pythagtriplem14 12471 pythagtriplem16 12473 bdmopn 14824 mulcncflem 14927 ivthinclemlopn 14956 ivthinclemuopn 14958 dveflem 15046 reeff1olem 15091 pilem3 15103 tanrpcl 15157 cosordlem 15169 rplogcl 15199 logdivlti 15201 cxplt 15236 cxple 15237 rpabscxpbnd 15260 ltexp2 15261 iooref1o 15765 |
| Copyright terms: Public domain | W3C validator |