| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrpd | GIF version | ||
| Description: Membership in the set of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| elrpd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| elrpd.2 | ⊢ (𝜑 → 0 < 𝐴) |
| Ref | Expression |
|---|---|
| elrpd | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrpd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | elrpd.2 | . 2 ⊢ (𝜑 → 0 < 𝐴) | |
| 3 | elrp 9777 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 4 | 1, 2, 3 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 class class class wbr 4044 ℝcr 7924 0cc0 7925 < clt 8107 ℝ+crp 9775 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rab 2493 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-rp 9776 |
| This theorem is referenced by: mul2lt0rgt0 9882 mul2lt0np 9885 zltaddlt1le 10129 modqval 10469 ltexp2a 10736 leexp2a 10737 expnlbnd2 10810 nn0ltexp2 10854 resqrexlem1arp 11316 resqrexlemp1rp 11317 resqrexlemcalc2 11326 resqrexlemcalc3 11327 resqrexlemgt0 11331 resqrexlemglsq 11333 rpsqrtcl 11352 absrpclap 11372 rpmaxcl 11534 rpmincl 11549 xrminrpcl 11585 xrbdtri 11587 mulcn2 11623 reccn2ap 11624 climge0 11636 divcnv 11808 georeclim 11824 cvgratnnlembern 11834 cvgratnnlemsumlt 11839 cvgratnnlemfm 11840 cvgratnnlemrate 11841 cvgratnn 11842 cvgratz 11843 rpefcl 11996 efltim 12009 ef01bndlem 12067 pythagtriplem12 12598 pythagtriplem14 12600 pythagtriplem16 12602 bdmopn 14976 mulcncflem 15079 ivthinclemlopn 15108 ivthinclemuopn 15110 dveflem 15198 reeff1olem 15243 pilem3 15255 tanrpcl 15309 cosordlem 15321 rplogcl 15351 logdivlti 15353 cxplt 15388 cxple 15389 rpabscxpbnd 15412 ltexp2 15413 iooref1o 15973 |
| Copyright terms: Public domain | W3C validator |