Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elrpd | GIF version |
Description: Membership in the set of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
elrpd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
elrpd.2 | ⊢ (𝜑 → 0 < 𝐴) |
Ref | Expression |
---|---|
elrpd | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrpd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | elrpd.2 | . 2 ⊢ (𝜑 → 0 < 𝐴) | |
3 | elrp 9591 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
4 | 1, 2, 3 | sylanbrc 414 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 class class class wbr 3982 ℝcr 7752 0cc0 7753 < clt 7933 ℝ+crp 9589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-rp 9590 |
This theorem is referenced by: mul2lt0rgt0 9696 mul2lt0np 9699 zltaddlt1le 9943 modqval 10259 ltexp2a 10507 leexp2a 10508 expnlbnd2 10580 nn0ltexp2 10623 resqrexlem1arp 10947 resqrexlemp1rp 10948 resqrexlemcalc2 10957 resqrexlemcalc3 10958 resqrexlemgt0 10962 resqrexlemglsq 10964 rpsqrtcl 10983 absrpclap 11003 rpmaxcl 11165 rpmincl 11179 xrminrpcl 11215 xrbdtri 11217 mulcn2 11253 reccn2ap 11254 climge0 11266 divcnv 11438 georeclim 11454 cvgratnnlembern 11464 cvgratnnlemsumlt 11469 cvgratnnlemfm 11470 cvgratnnlemrate 11471 cvgratnn 11472 cvgratz 11473 rpefcl 11626 efltim 11639 ef01bndlem 11697 pythagtriplem12 12207 pythagtriplem14 12209 pythagtriplem16 12211 bdmopn 13144 mulcncflem 13230 ivthinclemlopn 13254 ivthinclemuopn 13256 dveflem 13327 reeff1olem 13332 pilem3 13344 tanrpcl 13398 cosordlem 13410 rplogcl 13440 logdivlti 13442 cxplt 13476 cxple 13477 rpabscxpbnd 13499 ltexp2 13500 iooref1o 13913 |
Copyright terms: Public domain | W3C validator |