| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrpd | GIF version | ||
| Description: Membership in the set of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| elrpd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| elrpd.2 | ⊢ (𝜑 → 0 < 𝐴) |
| Ref | Expression |
|---|---|
| elrpd | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrpd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | elrpd.2 | . 2 ⊢ (𝜑 → 0 < 𝐴) | |
| 3 | elrp 9749 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 4 | 1, 2, 3 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 class class class wbr 4034 ℝcr 7897 0cc0 7898 < clt 8080 ℝ+crp 9747 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-rp 9748 |
| This theorem is referenced by: mul2lt0rgt0 9854 mul2lt0np 9857 zltaddlt1le 10101 modqval 10435 ltexp2a 10702 leexp2a 10703 expnlbnd2 10776 nn0ltexp2 10820 resqrexlem1arp 11189 resqrexlemp1rp 11190 resqrexlemcalc2 11199 resqrexlemcalc3 11200 resqrexlemgt0 11204 resqrexlemglsq 11206 rpsqrtcl 11225 absrpclap 11245 rpmaxcl 11407 rpmincl 11422 xrminrpcl 11458 xrbdtri 11460 mulcn2 11496 reccn2ap 11497 climge0 11509 divcnv 11681 georeclim 11697 cvgratnnlembern 11707 cvgratnnlemsumlt 11712 cvgratnnlemfm 11713 cvgratnnlemrate 11714 cvgratnn 11715 cvgratz 11716 rpefcl 11869 efltim 11882 ef01bndlem 11940 pythagtriplem12 12471 pythagtriplem14 12473 pythagtriplem16 12475 bdmopn 14848 mulcncflem 14951 ivthinclemlopn 14980 ivthinclemuopn 14982 dveflem 15070 reeff1olem 15115 pilem3 15127 tanrpcl 15181 cosordlem 15193 rplogcl 15223 logdivlti 15225 cxplt 15260 cxple 15261 rpabscxpbnd 15284 ltexp2 15285 iooref1o 15791 |
| Copyright terms: Public domain | W3C validator |