![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elrpd | GIF version |
Description: Membership in the set of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
elrpd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
elrpd.2 | ⊢ (𝜑 → 0 < 𝐴) |
Ref | Expression |
---|---|
elrpd | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrpd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | elrpd.2 | . 2 ⊢ (𝜑 → 0 < 𝐴) | |
3 | elrp 9293 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
4 | 1, 2, 3 | sylanbrc 411 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1448 class class class wbr 3875 ℝcr 7499 0cc0 7500 < clt 7672 ℝ+crp 9291 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-rab 2384 df-v 2643 df-un 3025 df-sn 3480 df-pr 3481 df-op 3483 df-br 3876 df-rp 9292 |
This theorem is referenced by: zltaddlt1le 9630 modqval 9938 ltexp2a 10186 leexp2a 10187 expnlbnd2 10258 resqrexlem1arp 10617 resqrexlemp1rp 10618 resqrexlemcalc2 10627 resqrexlemcalc3 10628 resqrexlemgt0 10632 resqrexlemglsq 10634 rpsqrtcl 10653 absrpclap 10673 rpmincl 10848 xrminrpcl 10882 xrbdtri 10884 mulcn2 10920 reccn2ap 10921 climge0 10933 divcnv 11105 georeclim 11121 cvgratnnlembern 11131 cvgratnnlemsumlt 11136 cvgratnnlemfm 11137 cvgratnnlemrate 11138 cvgratnn 11139 cvgratz 11140 rpefcl 11189 efltim 11202 ef01bndlem 11261 bdmopn 12432 mulcncflem 12502 |
Copyright terms: Public domain | W3C validator |