Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elrpd | GIF version |
Description: Membership in the set of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
elrpd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
elrpd.2 | ⊢ (𝜑 → 0 < 𝐴) |
Ref | Expression |
---|---|
elrpd | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrpd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | elrpd.2 | . 2 ⊢ (𝜑 → 0 < 𝐴) | |
3 | elrp 9626 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
4 | 1, 2, 3 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2146 class class class wbr 3998 ℝcr 7785 0cc0 7786 < clt 7966 ℝ+crp 9624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rab 2462 df-v 2737 df-un 3131 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-rp 9625 |
This theorem is referenced by: mul2lt0rgt0 9731 mul2lt0np 9734 zltaddlt1le 9978 modqval 10294 ltexp2a 10542 leexp2a 10543 expnlbnd2 10615 nn0ltexp2 10658 resqrexlem1arp 10982 resqrexlemp1rp 10983 resqrexlemcalc2 10992 resqrexlemcalc3 10993 resqrexlemgt0 10997 resqrexlemglsq 10999 rpsqrtcl 11018 absrpclap 11038 rpmaxcl 11200 rpmincl 11214 xrminrpcl 11250 xrbdtri 11252 mulcn2 11288 reccn2ap 11289 climge0 11301 divcnv 11473 georeclim 11489 cvgratnnlembern 11499 cvgratnnlemsumlt 11504 cvgratnnlemfm 11505 cvgratnnlemrate 11506 cvgratnn 11507 cvgratz 11508 rpefcl 11661 efltim 11674 ef01bndlem 11732 pythagtriplem12 12242 pythagtriplem14 12244 pythagtriplem16 12246 bdmopn 13584 mulcncflem 13670 ivthinclemlopn 13694 ivthinclemuopn 13696 dveflem 13767 reeff1olem 13772 pilem3 13784 tanrpcl 13838 cosordlem 13850 rplogcl 13880 logdivlti 13882 cxplt 13916 cxple 13917 rpabscxpbnd 13939 ltexp2 13940 iooref1o 14352 |
Copyright terms: Public domain | W3C validator |