| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f10d | GIF version | ||
| Description: The empty set maps one-to-one into any class, deduction version. (Contributed by AV, 25-Nov-2020.) |
| Ref | Expression |
|---|---|
| f10d.f | ⊢ (𝜑 → 𝐹 = ∅) |
| Ref | Expression |
|---|---|
| f10d | ⊢ (𝜑 → 𝐹:dom 𝐹–1-1→𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f10 5565 | . . 3 ⊢ ∅:∅–1-1→𝐴 | |
| 2 | dm0 4898 | . . . 4 ⊢ dom ∅ = ∅ | |
| 3 | f1eq2 5486 | . . . 4 ⊢ (dom ∅ = ∅ → (∅:dom ∅–1-1→𝐴 ↔ ∅:∅–1-1→𝐴)) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (∅:dom ∅–1-1→𝐴 ↔ ∅:∅–1-1→𝐴) |
| 5 | 1, 4 | mpbir 146 | . 2 ⊢ ∅:dom ∅–1-1→𝐴 |
| 6 | f10d.f | . . 3 ⊢ (𝜑 → 𝐹 = ∅) | |
| 7 | 6 | dmeqd 4886 | . . 3 ⊢ (𝜑 → dom 𝐹 = dom ∅) |
| 8 | eqidd 2207 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐴) | |
| 9 | 6, 7, 8 | f1eq123d 5523 | . 2 ⊢ (𝜑 → (𝐹:dom 𝐹–1-1→𝐴 ↔ ∅:dom ∅–1-1→𝐴)) |
| 10 | 5, 9 | mpbiri 168 | 1 ⊢ (𝜑 → 𝐹:dom 𝐹–1-1→𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∅c0 3462 dom cdm 4680 –1-1→wf1 5274 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-br 4049 df-opab 4111 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 |
| This theorem is referenced by: umgr0e 15761 |
| Copyright terms: Public domain | W3C validator |