| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f10d | GIF version | ||
| Description: The empty set maps one-to-one into any class, deduction version. (Contributed by AV, 25-Nov-2020.) |
| Ref | Expression |
|---|---|
| f10d.f | ⊢ (𝜑 → 𝐹 = ∅) |
| Ref | Expression |
|---|---|
| f10d | ⊢ (𝜑 → 𝐹:dom 𝐹–1-1→𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f10 5602 | . . 3 ⊢ ∅:∅–1-1→𝐴 | |
| 2 | dm0 4934 | . . . 4 ⊢ dom ∅ = ∅ | |
| 3 | f1eq2 5523 | . . . 4 ⊢ (dom ∅ = ∅ → (∅:dom ∅–1-1→𝐴 ↔ ∅:∅–1-1→𝐴)) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (∅:dom ∅–1-1→𝐴 ↔ ∅:∅–1-1→𝐴) |
| 5 | 1, 4 | mpbir 146 | . 2 ⊢ ∅:dom ∅–1-1→𝐴 |
| 6 | f10d.f | . . 3 ⊢ (𝜑 → 𝐹 = ∅) | |
| 7 | 6 | dmeqd 4922 | . . 3 ⊢ (𝜑 → dom 𝐹 = dom ∅) |
| 8 | eqidd 2230 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐴) | |
| 9 | 6, 7, 8 | f1eq123d 5560 | . 2 ⊢ (𝜑 → (𝐹:dom 𝐹–1-1→𝐴 ↔ ∅:dom ∅–1-1→𝐴)) |
| 10 | 5, 9 | mpbiri 168 | 1 ⊢ (𝜑 → 𝐹:dom 𝐹–1-1→𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∅c0 3491 dom cdm 4716 –1-1→wf1 5311 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 |
| This theorem is referenced by: umgr0e 15903 |
| Copyright terms: Public domain | W3C validator |