![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ffvelcdm | GIF version |
Description: A function's value belongs to its codomain. (Contributed by NM, 12-Aug-1999.) |
Ref | Expression |
---|---|
ffvelcdm | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5403 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fnfvelrn 5690 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ ran 𝐹) | |
3 | 1, 2 | sylan 283 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ ran 𝐹) |
4 | frn 5412 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
5 | 4 | sseld 3178 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐹‘𝐶) ∈ ran 𝐹 → (𝐹‘𝐶) ∈ 𝐵)) |
6 | 5 | adantr 276 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹‘𝐶) ∈ ran 𝐹 → (𝐹‘𝐶) ∈ 𝐵)) |
7 | 3, 6 | mpd 13 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 ran crn 4660 Fn wfn 5249 ⟶wf 5250 ‘cfv 5254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 |
This theorem is referenced by: ffvelcdmi 5692 ffvelcdmda 5693 dffo3 5705 ffnfv 5716 ffvresb 5721 fcompt 5728 fsn2 5732 fvconst 5746 foco2 5796 fcofo 5827 cocan1 5830 isocnv 5854 isores2 5856 isopolem 5865 isosolem 5867 fovcdm 6061 off 6143 mapsncnv 6749 2dom 6859 enm 6874 xpdom2 6885 xpmapenlem 6905 fiintim 6985 isotilem 7065 updjudhf 7138 exmidomniim 7200 seqf1og 10592 shftf 10974 summodclem2a 11524 isumcl 11568 mertenslem2 11679 nn0seqcvgd 12179 algrf 12183 eucalg 12197 phimullem 12363 pcmpt 12481 pcprod 12484 imasaddfnlemg 12897 imasaddflemg 12899 mhmpropd 13038 ghmsub 13321 znunit 14147 upxp 14440 uptx 14442 txhmeo 14487 cncfmet 14747 dvaddxxbr 14850 dvcj 14858 dvfre 14859 plyf 14883 plyaddlem 14895 plymullem 14896 lgsdir 15151 lgsdi 15153 lgseisenlem3 15188 bj-charfunr 15302 |
Copyright terms: Public domain | W3C validator |