| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffvelcdm | GIF version | ||
| Description: A function's value belongs to its codomain. (Contributed by NM, 12-Aug-1999.) |
| Ref | Expression |
|---|---|
| ffvelcdm | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5425 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnfvelrn 5712 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ ran 𝐹) | |
| 3 | 1, 2 | sylan 283 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ ran 𝐹) |
| 4 | frn 5434 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 5 | 4 | sseld 3192 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐹‘𝐶) ∈ ran 𝐹 → (𝐹‘𝐶) ∈ 𝐵)) |
| 6 | 5 | adantr 276 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹‘𝐶) ∈ ran 𝐹 → (𝐹‘𝐶) ∈ 𝐵)) |
| 7 | 3, 6 | mpd 13 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2176 ran crn 4676 Fn wfn 5266 ⟶wf 5267 ‘cfv 5271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 |
| This theorem is referenced by: ffvelcdmi 5714 ffvelcdmda 5715 dffo3 5727 ffnfv 5738 ffvresb 5743 fcompt 5750 fsn2 5754 fvconst 5772 foco2 5822 fcofo 5853 cocan1 5856 isocnv 5880 isores2 5882 isopolem 5891 isosolem 5893 fovcdm 6089 off 6171 mapsncnv 6782 2dom 6897 enm 6915 xpdom2 6926 xpmapenlem 6946 fiintim 7028 isotilem 7108 updjudhf 7181 exmidomniim 7243 finacn 7316 seqf1og 10666 shftf 11141 summodclem2a 11692 isumcl 11736 mertenslem2 11847 3dvds 12175 nn0seqcvgd 12363 algrf 12367 eucalg 12381 phimullem 12547 pcmpt 12666 pcprod 12669 imasaddfnlemg 13146 imasaddflemg 13148 mhmpropd 13298 ghmsub 13587 znunit 14421 upxp 14744 uptx 14746 txhmeo 14791 cncfmet 15064 dvaddxxbr 15173 dvcj 15181 dvfre 15182 plyf 15209 plyaddlem 15221 plymullem 15222 plycolemc 15230 plyreres 15236 dvply1 15237 lgsdir 15512 lgsdi 15514 lgseisenlem3 15549 bj-charfunr 15746 |
| Copyright terms: Public domain | W3C validator |