| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffvelcdm | GIF version | ||
| Description: A function's value belongs to its codomain. (Contributed by NM, 12-Aug-1999.) |
| Ref | Expression |
|---|---|
| ffvelcdm | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5424 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnfvelrn 5711 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ ran 𝐹) | |
| 3 | 1, 2 | sylan 283 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ ran 𝐹) |
| 4 | frn 5433 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 5 | 4 | sseld 3191 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐹‘𝐶) ∈ ran 𝐹 → (𝐹‘𝐶) ∈ 𝐵)) |
| 6 | 5 | adantr 276 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹‘𝐶) ∈ ran 𝐹 → (𝐹‘𝐶) ∈ 𝐵)) |
| 7 | 3, 6 | mpd 13 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2175 ran crn 4675 Fn wfn 5265 ⟶wf 5266 ‘cfv 5270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 |
| This theorem is referenced by: ffvelcdmi 5713 ffvelcdmda 5714 dffo3 5726 ffnfv 5737 ffvresb 5742 fcompt 5749 fsn2 5753 fvconst 5771 foco2 5821 fcofo 5852 cocan1 5855 isocnv 5879 isores2 5881 isopolem 5890 isosolem 5892 fovcdm 6088 off 6170 mapsncnv 6781 2dom 6896 enm 6914 xpdom2 6925 xpmapenlem 6945 fiintim 7027 isotilem 7107 updjudhf 7180 exmidomniim 7242 finacn 7315 seqf1og 10664 shftf 11112 summodclem2a 11663 isumcl 11707 mertenslem2 11818 3dvds 12146 nn0seqcvgd 12334 algrf 12338 eucalg 12352 phimullem 12518 pcmpt 12637 pcprod 12640 imasaddfnlemg 13117 imasaddflemg 13119 mhmpropd 13269 ghmsub 13558 znunit 14392 upxp 14715 uptx 14717 txhmeo 14762 cncfmet 15035 dvaddxxbr 15144 dvcj 15152 dvfre 15153 plyf 15180 plyaddlem 15192 plymullem 15193 plycolemc 15201 plyreres 15207 dvply1 15208 lgsdir 15483 lgsdi 15485 lgseisenlem3 15520 bj-charfunr 15708 |
| Copyright terms: Public domain | W3C validator |