| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffvelcdm | GIF version | ||
| Description: A function's value belongs to its codomain. (Contributed by NM, 12-Aug-1999.) |
| Ref | Expression |
|---|---|
| ffvelcdm | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5473 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnfvelrn 5767 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ ran 𝐹) | |
| 3 | 1, 2 | sylan 283 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ ran 𝐹) |
| 4 | frn 5482 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 5 | 4 | sseld 3223 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐹‘𝐶) ∈ ran 𝐹 → (𝐹‘𝐶) ∈ 𝐵)) |
| 6 | 5 | adantr 276 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹‘𝐶) ∈ ran 𝐹 → (𝐹‘𝐶) ∈ 𝐵)) |
| 7 | 3, 6 | mpd 13 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 ran crn 4720 Fn wfn 5313 ⟶wf 5314 ‘cfv 5318 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 |
| This theorem is referenced by: ffvelcdmi 5769 ffvelcdmda 5770 dffo3 5782 ffnfv 5793 ffvresb 5798 fcompt 5805 fsn2 5809 fvconst 5827 foco2 5877 fcofo 5908 cocan1 5911 isocnv 5935 isores2 5937 isopolem 5946 isosolem 5948 fovcdm 6148 off 6231 mapsncnv 6842 2dom 6958 dom1o 6977 enm 6979 xpdom2 6990 xpmapenlem 7010 fiintim 7093 isotilem 7173 updjudhf 7246 exmidomniim 7308 finacn 7386 seqf1og 10743 shftf 11341 summodclem2a 11892 isumcl 11936 mertenslem2 12047 3dvds 12375 nn0seqcvgd 12563 algrf 12567 eucalg 12581 phimullem 12747 pcmpt 12866 pcprod 12869 imasaddfnlemg 13347 imasaddflemg 13349 mhmpropd 13499 ghmsub 13788 znunit 14623 upxp 14946 uptx 14948 txhmeo 14993 cncfmet 15266 dvaddxxbr 15375 dvcj 15383 dvfre 15384 plyf 15411 plyaddlem 15423 plymullem 15424 plycolemc 15432 plyreres 15438 dvply1 15439 lgsdir 15714 lgsdi 15716 lgseisenlem3 15751 bj-charfunr 16173 |
| Copyright terms: Public domain | W3C validator |