Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ffvelcdm | GIF version |
Description: A function's value belongs to its codomain. (Contributed by NM, 12-Aug-1999.) |
Ref | Expression |
---|---|
ffvelcdm | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5350 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fnfvelrn 5633 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ ran 𝐹) | |
3 | 1, 2 | sylan 282 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ ran 𝐹) |
4 | frn 5359 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
5 | 4 | sseld 3148 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐹‘𝐶) ∈ ran 𝐹 → (𝐹‘𝐶) ∈ 𝐵)) |
6 | 5 | adantr 275 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹‘𝐶) ∈ ran 𝐹 → (𝐹‘𝐶) ∈ 𝐵)) |
7 | 3, 6 | mpd 13 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2143 ran crn 4614 Fn wfn 5196 ⟶wf 5197 ‘cfv 5201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 706 ax-5 1442 ax-7 1443 ax-gen 1444 ax-ie1 1488 ax-ie2 1489 ax-8 1499 ax-10 1500 ax-11 1501 ax-i12 1502 ax-bndl 1504 ax-4 1505 ax-17 1521 ax-i9 1525 ax-ial 1529 ax-i5r 1530 ax-14 2146 ax-ext 2154 ax-sep 4109 ax-pow 4162 ax-pr 4196 |
This theorem depends on definitions: df-bi 116 df-3an 977 df-tru 1353 df-nf 1456 df-sb 1758 df-eu 2024 df-mo 2025 df-clab 2159 df-cleq 2165 df-clel 2168 df-nfc 2303 df-ral 2455 df-rex 2456 df-v 2734 df-sbc 2958 df-un 3127 df-in 3129 df-ss 3136 df-pw 3570 df-sn 3591 df-pr 3592 df-op 3594 df-uni 3799 df-br 3992 df-opab 4053 df-id 4280 df-xp 4619 df-rel 4620 df-cnv 4621 df-co 4622 df-dm 4623 df-rn 4624 df-iota 5163 df-fun 5203 df-fn 5204 df-f 5205 df-fv 5209 |
This theorem is referenced by: ffvelrni 5635 ffvelrnda 5636 dffo3 5648 ffnfv 5659 ffvresb 5664 fcompt 5671 fsn2 5675 fvconst 5689 foco2 5738 fcofo 5768 cocan1 5771 isocnv 5795 isores2 5797 isopolem 5806 isosolem 5808 fovrn 6000 off 6078 mapsncnv 6678 2dom 6788 enm 6803 xpdom2 6814 xpmapenlem 6832 fiintim 6911 isotilem 6988 updjudhf 7061 exmidomniim 7122 shftf 10799 summodclem2a 11349 isumcl 11393 mertenslem2 11504 nn0seqcvgd 12000 algrf 12004 eucalg 12018 phimullem 12184 pcmpt 12300 pcprod 12303 mhmpropd 12694 upxp 13110 uptx 13112 txhmeo 13157 cncfmet 13417 dvaddxxbr 13503 dvcj 13511 dvfre 13512 lgsdir 13774 lgsdi 13776 bj-charfunr 13889 |
Copyright terms: Public domain | W3C validator |