| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffvelcdm | GIF version | ||
| Description: A function's value belongs to its codomain. (Contributed by NM, 12-Aug-1999.) |
| Ref | Expression |
|---|---|
| ffvelcdm | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5445 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnfvelrn 5735 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ ran 𝐹) | |
| 3 | 1, 2 | sylan 283 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ ran 𝐹) |
| 4 | frn 5454 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 5 | 4 | sseld 3200 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐹‘𝐶) ∈ ran 𝐹 → (𝐹‘𝐶) ∈ 𝐵)) |
| 6 | 5 | adantr 276 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹‘𝐶) ∈ ran 𝐹 → (𝐹‘𝐶) ∈ 𝐵)) |
| 7 | 3, 6 | mpd 13 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2178 ran crn 4694 Fn wfn 5285 ⟶wf 5286 ‘cfv 5290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 |
| This theorem is referenced by: ffvelcdmi 5737 ffvelcdmda 5738 dffo3 5750 ffnfv 5761 ffvresb 5766 fcompt 5773 fsn2 5777 fvconst 5795 foco2 5845 fcofo 5876 cocan1 5879 isocnv 5903 isores2 5905 isopolem 5914 isosolem 5916 fovcdm 6112 off 6194 mapsncnv 6805 2dom 6921 enm 6940 xpdom2 6951 xpmapenlem 6971 fiintim 7054 isotilem 7134 updjudhf 7207 exmidomniim 7269 finacn 7347 seqf1og 10703 shftf 11256 summodclem2a 11807 isumcl 11851 mertenslem2 11962 3dvds 12290 nn0seqcvgd 12478 algrf 12482 eucalg 12496 phimullem 12662 pcmpt 12781 pcprod 12784 imasaddfnlemg 13261 imasaddflemg 13263 mhmpropd 13413 ghmsub 13702 znunit 14536 upxp 14859 uptx 14861 txhmeo 14906 cncfmet 15179 dvaddxxbr 15288 dvcj 15296 dvfre 15297 plyf 15324 plyaddlem 15336 plymullem 15337 plycolemc 15345 plyreres 15351 dvply1 15352 lgsdir 15627 lgsdi 15629 lgseisenlem3 15664 bj-charfunr 15945 dom1o 16128 |
| Copyright terms: Public domain | W3C validator |