| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffvelcdm | GIF version | ||
| Description: A function's value belongs to its codomain. (Contributed by NM, 12-Aug-1999.) |
| Ref | Expression |
|---|---|
| ffvelcdm | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5410 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnfvelrn 5697 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ ran 𝐹) | |
| 3 | 1, 2 | sylan 283 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ ran 𝐹) |
| 4 | frn 5419 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 5 | 4 | sseld 3183 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐹‘𝐶) ∈ ran 𝐹 → (𝐹‘𝐶) ∈ 𝐵)) |
| 6 | 5 | adantr 276 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹‘𝐶) ∈ ran 𝐹 → (𝐹‘𝐶) ∈ 𝐵)) |
| 7 | 3, 6 | mpd 13 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 ran crn 4665 Fn wfn 5254 ⟶wf 5255 ‘cfv 5259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 |
| This theorem is referenced by: ffvelcdmi 5699 ffvelcdmda 5700 dffo3 5712 ffnfv 5723 ffvresb 5728 fcompt 5735 fsn2 5739 fvconst 5753 foco2 5803 fcofo 5834 cocan1 5837 isocnv 5861 isores2 5863 isopolem 5872 isosolem 5874 fovcdm 6070 off 6152 mapsncnv 6763 2dom 6873 enm 6888 xpdom2 6899 xpmapenlem 6919 fiintim 7001 isotilem 7081 updjudhf 7154 exmidomniim 7216 finacn 7289 seqf1og 10632 shftf 11014 summodclem2a 11565 isumcl 11609 mertenslem2 11720 3dvds 12048 nn0seqcvgd 12236 algrf 12240 eucalg 12254 phimullem 12420 pcmpt 12539 pcprod 12542 imasaddfnlemg 13018 imasaddflemg 13020 mhmpropd 13170 ghmsub 13459 znunit 14293 upxp 14616 uptx 14618 txhmeo 14663 cncfmet 14936 dvaddxxbr 15045 dvcj 15053 dvfre 15054 plyf 15081 plyaddlem 15093 plymullem 15094 plycolemc 15102 plyreres 15108 dvply1 15109 lgsdir 15384 lgsdi 15386 lgseisenlem3 15421 bj-charfunr 15564 |
| Copyright terms: Public domain | W3C validator |