![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ffvelcdm | GIF version |
Description: A function's value belongs to its codomain. (Contributed by NM, 12-Aug-1999.) |
Ref | Expression |
---|---|
ffvelcdm | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5367 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fnfvelrn 5650 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ ran 𝐹) | |
3 | 1, 2 | sylan 283 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ ran 𝐹) |
4 | frn 5376 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
5 | 4 | sseld 3156 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐹‘𝐶) ∈ ran 𝐹 → (𝐹‘𝐶) ∈ 𝐵)) |
6 | 5 | adantr 276 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹‘𝐶) ∈ ran 𝐹 → (𝐹‘𝐶) ∈ 𝐵)) |
7 | 3, 6 | mpd 13 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2148 ran crn 4629 Fn wfn 5213 ⟶wf 5214 ‘cfv 5218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 |
This theorem is referenced by: ffvelcdmi 5652 ffvelcdmda 5653 dffo3 5665 ffnfv 5676 ffvresb 5681 fcompt 5688 fsn2 5692 fvconst 5706 foco2 5756 fcofo 5787 cocan1 5790 isocnv 5814 isores2 5816 isopolem 5825 isosolem 5827 fovcdm 6019 off 6097 mapsncnv 6697 2dom 6807 enm 6822 xpdom2 6833 xpmapenlem 6851 fiintim 6930 isotilem 7007 updjudhf 7080 exmidomniim 7141 shftf 10841 summodclem2a 11391 isumcl 11435 mertenslem2 11546 nn0seqcvgd 12043 algrf 12047 eucalg 12061 phimullem 12227 pcmpt 12343 pcprod 12346 imasaddfnlemg 12740 imasaddflemg 12742 mhmpropd 12862 upxp 13811 uptx 13813 txhmeo 13858 cncfmet 14118 dvaddxxbr 14204 dvcj 14212 dvfre 14213 lgsdir 14475 lgsdi 14477 bj-charfunr 14601 |
Copyright terms: Public domain | W3C validator |