| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvco3 | GIF version | ||
| Description: Value of a function composition. (Contributed by NM, 3-Jan-2004.) (Revised by Mario Carneiro, 26-Dec-2014.) |
| Ref | Expression |
|---|---|
| fvco3 | ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5425 | . 2 ⊢ (𝐺:𝐴⟶𝐵 → 𝐺 Fn 𝐴) | |
| 2 | fvco2 5648 | . 2 ⊢ ((𝐺 Fn 𝐴 ∧ 𝐶 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) | |
| 3 | 1, 2 | sylan 283 | 1 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2176 ∘ ccom 4679 Fn wfn 5266 ⟶wf 5267 ‘cfv 5271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 |
| This theorem is referenced by: fvco4 5651 foco2 5822 f1ocnvfv1 5846 f1ocnvfv2 5847 fcof1 5852 fcofo 5853 cocan1 5856 cocan2 5857 isotr 5885 algrflem 6315 algrflemg 6316 difinfsn 7202 ctssdccl 7213 cc3 7380 0tonninf 10585 1tonninf 10586 seqf1oglem2 10665 seqf1og 10666 summodclem3 11691 fsumf1o 11701 fsumcl2lem 11709 fsumadd 11717 fsummulc2 11759 prodmodclem3 11886 fprodf1o 11899 fprodmul 11902 algcvg 12370 eulerthlemth 12554 ennnfonelemnn0 12793 ctinfomlemom 12798 mhmco 13322 gsumfzreidx 13673 gsumfzmhm 13679 mplsubgfileminv 14462 cnptopco 14694 lmtopcnp 14722 upxp 14744 uptx 14746 cnmpt11 14755 cnmpt21 14763 comet 14971 cnmetdval 15001 climcncf 15056 cncfco 15063 limccnpcntop 15147 dvcoapbr 15179 dvcjbr 15180 dvfre 15182 plycjlemc 15232 plycj 15233 isomninnlem 15969 iswomninnlem 15988 ismkvnnlem 15991 |
| Copyright terms: Public domain | W3C validator |