| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fvco3 | GIF version | ||
| Description: Value of a function composition. (Contributed by NM, 3-Jan-2004.) (Revised by Mario Carneiro, 26-Dec-2014.) | 
| Ref | Expression | 
|---|---|
| fvco3 | ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ffn 5407 | . 2 ⊢ (𝐺:𝐴⟶𝐵 → 𝐺 Fn 𝐴) | |
| 2 | fvco2 5630 | . 2 ⊢ ((𝐺 Fn 𝐴 ∧ 𝐶 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) | |
| 3 | 1, 2 | sylan 283 | 1 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∘ ccom 4667 Fn wfn 5253 ⟶wf 5254 ‘cfv 5258 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 | 
| This theorem is referenced by: fvco4 5633 foco2 5800 f1ocnvfv1 5824 f1ocnvfv2 5825 fcof1 5830 fcofo 5831 cocan1 5834 cocan2 5835 isotr 5863 algrflem 6287 algrflemg 6288 difinfsn 7166 ctssdccl 7177 cc3 7335 0tonninf 10532 1tonninf 10533 seqf1oglem2 10612 seqf1og 10613 summodclem3 11545 fsumf1o 11555 fsumcl2lem 11563 fsumadd 11571 fsummulc2 11613 prodmodclem3 11740 fprodf1o 11753 fprodmul 11756 algcvg 12216 eulerthlemth 12400 ennnfonelemnn0 12639 ctinfomlemom 12644 mhmco 13122 gsumfzreidx 13467 gsumfzmhm 13473 cnptopco 14458 lmtopcnp 14486 upxp 14508 uptx 14510 cnmpt11 14519 cnmpt21 14527 comet 14735 cnmetdval 14765 climcncf 14820 cncfco 14827 limccnpcntop 14911 dvcoapbr 14943 dvcjbr 14944 dvfre 14946 plycjlemc 14996 plycj 14997 isomninnlem 15674 iswomninnlem 15693 ismkvnnlem 15696 | 
| Copyright terms: Public domain | W3C validator |