| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvco3 | GIF version | ||
| Description: Value of a function composition. (Contributed by NM, 3-Jan-2004.) (Revised by Mario Carneiro, 26-Dec-2014.) |
| Ref | Expression |
|---|---|
| fvco3 | ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5424 | . 2 ⊢ (𝐺:𝐴⟶𝐵 → 𝐺 Fn 𝐴) | |
| 2 | fvco2 5647 | . 2 ⊢ ((𝐺 Fn 𝐴 ∧ 𝐶 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) | |
| 3 | 1, 2 | sylan 283 | 1 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 ∘ ccom 4678 Fn wfn 5265 ⟶wf 5266 ‘cfv 5270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 |
| This theorem is referenced by: fvco4 5650 foco2 5821 f1ocnvfv1 5845 f1ocnvfv2 5846 fcof1 5851 fcofo 5852 cocan1 5855 cocan2 5856 isotr 5884 algrflem 6314 algrflemg 6315 difinfsn 7201 ctssdccl 7212 cc3 7379 0tonninf 10583 1tonninf 10584 seqf1oglem2 10663 seqf1og 10664 summodclem3 11633 fsumf1o 11643 fsumcl2lem 11651 fsumadd 11659 fsummulc2 11701 prodmodclem3 11828 fprodf1o 11841 fprodmul 11844 algcvg 12312 eulerthlemth 12496 ennnfonelemnn0 12735 ctinfomlemom 12740 mhmco 13264 gsumfzreidx 13615 gsumfzmhm 13621 mplsubgfileminv 14404 cnptopco 14636 lmtopcnp 14664 upxp 14686 uptx 14688 cnmpt11 14697 cnmpt21 14705 comet 14913 cnmetdval 14943 climcncf 14998 cncfco 15005 limccnpcntop 15089 dvcoapbr 15121 dvcjbr 15122 dvfre 15124 plycjlemc 15174 plycj 15175 isomninnlem 15902 iswomninnlem 15921 ismkvnnlem 15924 |
| Copyright terms: Public domain | W3C validator |