![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvco3 | GIF version |
Description: Value of a function composition. (Contributed by NM, 3-Jan-2004.) (Revised by Mario Carneiro, 26-Dec-2014.) |
Ref | Expression |
---|---|
fvco3 | ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5404 | . 2 ⊢ (𝐺:𝐴⟶𝐵 → 𝐺 Fn 𝐴) | |
2 | fvco2 5627 | . 2 ⊢ ((𝐺 Fn 𝐴 ∧ 𝐶 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) | |
3 | 1, 2 | sylan 283 | 1 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∘ ccom 4664 Fn wfn 5250 ⟶wf 5251 ‘cfv 5255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 |
This theorem is referenced by: fvco4 5630 foco2 5797 f1ocnvfv1 5821 f1ocnvfv2 5822 fcof1 5827 fcofo 5828 cocan1 5831 cocan2 5832 isotr 5860 algrflem 6284 algrflemg 6285 difinfsn 7161 ctssdccl 7172 cc3 7330 0tonninf 10514 1tonninf 10515 seqf1oglem2 10594 seqf1og 10595 summodclem3 11526 fsumf1o 11536 fsumcl2lem 11544 fsumadd 11552 fsummulc2 11594 prodmodclem3 11721 fprodf1o 11734 fprodmul 11737 algcvg 12189 eulerthlemth 12373 ennnfonelemnn0 12582 ctinfomlemom 12587 mhmco 13065 gsumfzreidx 13410 gsumfzmhm 13416 cnptopco 14401 lmtopcnp 14429 upxp 14451 uptx 14453 cnmpt11 14462 cnmpt21 14470 comet 14678 cnmetdval 14708 climcncf 14763 cncfco 14770 limccnpcntop 14854 dvcoapbr 14886 dvcjbr 14887 dvfre 14889 plycjlemc 14938 plycj 14939 isomninnlem 15590 iswomninnlem 15609 ismkvnnlem 15612 |
Copyright terms: Public domain | W3C validator |