| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvco3 | GIF version | ||
| Description: Value of a function composition. (Contributed by NM, 3-Jan-2004.) (Revised by Mario Carneiro, 26-Dec-2014.) |
| Ref | Expression |
|---|---|
| fvco3 | ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5410 | . 2 ⊢ (𝐺:𝐴⟶𝐵 → 𝐺 Fn 𝐴) | |
| 2 | fvco2 5633 | . 2 ⊢ ((𝐺 Fn 𝐴 ∧ 𝐶 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) | |
| 3 | 1, 2 | sylan 283 | 1 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∘ ccom 4668 Fn wfn 5254 ⟶wf 5255 ‘cfv 5259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 |
| This theorem is referenced by: fvco4 5636 foco2 5803 f1ocnvfv1 5827 f1ocnvfv2 5828 fcof1 5833 fcofo 5834 cocan1 5837 cocan2 5838 isotr 5866 algrflem 6296 algrflemg 6297 difinfsn 7175 ctssdccl 7186 cc3 7353 0tonninf 10551 1tonninf 10552 seqf1oglem2 10631 seqf1og 10632 summodclem3 11564 fsumf1o 11574 fsumcl2lem 11582 fsumadd 11590 fsummulc2 11632 prodmodclem3 11759 fprodf1o 11772 fprodmul 11775 algcvg 12243 eulerthlemth 12427 ennnfonelemnn0 12666 ctinfomlemom 12671 mhmco 13194 gsumfzreidx 13545 gsumfzmhm 13551 mplsubgfileminv 14334 cnptopco 14566 lmtopcnp 14594 upxp 14616 uptx 14618 cnmpt11 14627 cnmpt21 14635 comet 14843 cnmetdval 14873 climcncf 14928 cncfco 14935 limccnpcntop 15019 dvcoapbr 15051 dvcjbr 15052 dvfre 15054 plycjlemc 15104 plycj 15105 isomninnlem 15787 iswomninnlem 15806 ismkvnnlem 15809 |
| Copyright terms: Public domain | W3C validator |