![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvco3 | GIF version |
Description: Value of a function composition. (Contributed by NM, 3-Jan-2004.) (Revised by Mario Carneiro, 26-Dec-2014.) |
Ref | Expression |
---|---|
fvco3 | ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5365 | . 2 ⊢ (𝐺:𝐴⟶𝐵 → 𝐺 Fn 𝐴) | |
2 | fvco2 5585 | . 2 ⊢ ((𝐺 Fn 𝐴 ∧ 𝐶 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) | |
3 | 1, 2 | sylan 283 | 1 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ∘ ccom 4630 Fn wfn 5211 ⟶wf 5212 ‘cfv 5216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2739 df-sbc 2963 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-br 4004 df-opab 4065 df-id 4293 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-iota 5178 df-fun 5218 df-fn 5219 df-f 5220 df-fv 5224 |
This theorem is referenced by: fvco4 5588 foco2 5754 f1ocnvfv1 5777 f1ocnvfv2 5778 fcof1 5783 fcofo 5784 cocan1 5787 cocan2 5788 isotr 5816 algrflem 6229 algrflemg 6230 difinfsn 7098 ctssdccl 7109 cc3 7266 0tonninf 10436 1tonninf 10437 summodclem3 11383 fsumf1o 11393 fsumcl2lem 11401 fsumadd 11409 fsummulc2 11451 prodmodclem3 11578 fprodf1o 11591 fprodmul 11594 algcvg 12042 eulerthlemth 12226 ennnfonelemnn0 12417 ctinfomlemom 12422 mhmco 12828 cnptopco 13615 lmtopcnp 13643 upxp 13665 uptx 13667 cnmpt11 13676 cnmpt21 13684 comet 13892 cnmetdval 13922 climcncf 13964 cncfco 13971 limccnpcntop 14037 dvcoapbr 14064 dvcjbr 14065 dvfre 14067 isomninnlem 14660 iswomninnlem 14679 ismkvnnlem 14682 |
Copyright terms: Public domain | W3C validator |