| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvco3 | GIF version | ||
| Description: Value of a function composition. (Contributed by NM, 3-Jan-2004.) (Revised by Mario Carneiro, 26-Dec-2014.) |
| Ref | Expression |
|---|---|
| fvco3 | ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5472 | . 2 ⊢ (𝐺:𝐴⟶𝐵 → 𝐺 Fn 𝐴) | |
| 2 | fvco2 5702 | . 2 ⊢ ((𝐺 Fn 𝐴 ∧ 𝐶 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) | |
| 3 | 1, 2 | sylan 283 | 1 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∘ ccom 4722 Fn wfn 5312 ⟶wf 5313 ‘cfv 5317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 |
| This theorem is referenced by: fvco4 5705 foco2 5876 f1ocnvfv1 5900 f1ocnvfv2 5901 fcof1 5906 fcofo 5907 cocan1 5910 cocan2 5911 isotr 5939 algrflem 6373 algrflemg 6374 difinfsn 7263 ctssdccl 7274 cc3 7450 0tonninf 10657 1tonninf 10658 seqf1oglem2 10737 seqf1og 10738 summodclem3 11886 fsumf1o 11896 fsumcl2lem 11904 fsumadd 11912 fsummulc2 11954 prodmodclem3 12081 fprodf1o 12094 fprodmul 12097 algcvg 12565 eulerthlemth 12749 ennnfonelemnn0 12988 ctinfomlemom 12993 mhmco 13518 gsumfzreidx 13869 gsumfzmhm 13875 mplsubgfileminv 14658 cnptopco 14890 lmtopcnp 14918 upxp 14940 uptx 14942 cnmpt11 14951 cnmpt21 14959 comet 15167 cnmetdval 15197 climcncf 15252 cncfco 15259 limccnpcntop 15343 dvcoapbr 15375 dvcjbr 15376 dvfre 15378 plycjlemc 15428 plycj 15429 isomninnlem 16357 iswomninnlem 16376 ismkvnnlem 16379 |
| Copyright terms: Public domain | W3C validator |