| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvco3 | GIF version | ||
| Description: Value of a function composition. (Contributed by NM, 3-Jan-2004.) (Revised by Mario Carneiro, 26-Dec-2014.) |
| Ref | Expression |
|---|---|
| fvco3 | ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5440 | . 2 ⊢ (𝐺:𝐴⟶𝐵 → 𝐺 Fn 𝐴) | |
| 2 | fvco2 5666 | . 2 ⊢ ((𝐺 Fn 𝐴 ∧ 𝐶 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) | |
| 3 | 1, 2 | sylan 283 | 1 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∘ ccom 4692 Fn wfn 5280 ⟶wf 5281 ‘cfv 5285 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-fv 5293 |
| This theorem is referenced by: fvco4 5669 foco2 5840 f1ocnvfv1 5864 f1ocnvfv2 5865 fcof1 5870 fcofo 5871 cocan1 5874 cocan2 5875 isotr 5903 algrflem 6333 algrflemg 6334 difinfsn 7223 ctssdccl 7234 cc3 7410 0tonninf 10617 1tonninf 10618 seqf1oglem2 10697 seqf1og 10698 summodclem3 11776 fsumf1o 11786 fsumcl2lem 11794 fsumadd 11802 fsummulc2 11844 prodmodclem3 11971 fprodf1o 11984 fprodmul 11987 algcvg 12455 eulerthlemth 12639 ennnfonelemnn0 12878 ctinfomlemom 12883 mhmco 13407 gsumfzreidx 13758 gsumfzmhm 13764 mplsubgfileminv 14547 cnptopco 14779 lmtopcnp 14807 upxp 14829 uptx 14831 cnmpt11 14840 cnmpt21 14848 comet 15056 cnmetdval 15086 climcncf 15141 cncfco 15148 limccnpcntop 15232 dvcoapbr 15264 dvcjbr 15265 dvfre 15267 plycjlemc 15317 plycj 15318 isomninnlem 16141 iswomninnlem 16160 ismkvnnlem 16163 |
| Copyright terms: Public domain | W3C validator |