Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvco3 | GIF version |
Description: Value of a function composition. (Contributed by NM, 3-Jan-2004.) (Revised by Mario Carneiro, 26-Dec-2014.) |
Ref | Expression |
---|---|
fvco3 | ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5337 | . 2 ⊢ (𝐺:𝐴⟶𝐵 → 𝐺 Fn 𝐴) | |
2 | fvco2 5555 | . 2 ⊢ ((𝐺 Fn 𝐴 ∧ 𝐶 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) | |
3 | 1, 2 | sylan 281 | 1 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 ∘ ccom 4608 Fn wfn 5183 ⟶wf 5184 ‘cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 |
This theorem is referenced by: fvco4 5558 foco2 5722 f1ocnvfv1 5745 f1ocnvfv2 5746 fcof1 5751 fcofo 5752 cocan1 5755 cocan2 5756 isotr 5784 algrflem 6197 algrflemg 6198 difinfsn 7065 ctssdccl 7076 cc3 7209 0tonninf 10374 1tonninf 10375 summodclem3 11321 fsumf1o 11331 fsumcl2lem 11339 fsumadd 11347 fsummulc2 11389 prodmodclem3 11516 fprodf1o 11529 fprodmul 11532 algcvg 11980 eulerthlemth 12164 ennnfonelemnn0 12355 ctinfomlemom 12360 cnptopco 12862 lmtopcnp 12890 upxp 12912 uptx 12914 cnmpt11 12923 cnmpt21 12931 comet 13139 cnmetdval 13169 climcncf 13211 cncfco 13218 limccnpcntop 13284 dvcoapbr 13311 dvcjbr 13312 dvfre 13314 isomninnlem 13909 iswomninnlem 13928 ismkvnnlem 13931 |
Copyright terms: Public domain | W3C validator |