ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gausslemma2dlem2 GIF version

Theorem gausslemma2dlem2 15120
Description: Lemma 2 for gausslemma2d 15127. (Contributed by AV, 4-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
gausslemma2d.m 𝑀 = (⌊‘(𝑃 / 4))
Assertion
Ref Expression
gausslemma2dlem2 (𝜑 → ∀𝑘 ∈ (1...𝑀)(𝑅𝑘) = (𝑘 · 2))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑘,𝐻   𝑅,𝑘   𝜑,𝑘   𝑥,𝑀   𝑥,𝑘
Allowed substitution hints:   𝑃(𝑘)   𝑅(𝑥)   𝑀(𝑘)

Proof of Theorem gausslemma2dlem2
StepHypRef Expression
1 gausslemma2d.r . . 3 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
2 oveq1 5917 . . . . . . 7 (𝑥 = 𝑘 → (𝑥 · 2) = (𝑘 · 2))
32breq1d 4039 . . . . . 6 (𝑥 = 𝑘 → ((𝑥 · 2) < (𝑃 / 2) ↔ (𝑘 · 2) < (𝑃 / 2)))
42oveq2d 5926 . . . . . 6 (𝑥 = 𝑘 → (𝑃 − (𝑥 · 2)) = (𝑃 − (𝑘 · 2)))
53, 2, 4ifbieq12d 3583 . . . . 5 (𝑥 = 𝑘 → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))))
65adantl 277 . . . 4 (((𝜑𝑘 ∈ (1...𝑀)) ∧ 𝑥 = 𝑘) → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))))
7 elfz1b 10146 . . . . . . . 8 (𝑘 ∈ (1...𝑀) ↔ (𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑘𝑀))
8 nnre 8979 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
98adantr 276 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → 𝑘 ∈ ℝ)
10 nnre 8979 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
1110adantl 277 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℝ)
12 2re 9042 . . . . . . . . . . . . 13 2 ∈ ℝ
13 2pos 9063 . . . . . . . . . . . . 13 0 < 2
1412, 13pm3.2i 272 . . . . . . . . . . . 12 (2 ∈ ℝ ∧ 0 < 2)
1514a1i 9 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (2 ∈ ℝ ∧ 0 < 2))
16 lemul1 8602 . . . . . . . . . . 11 ((𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝑘𝑀 ↔ (𝑘 · 2) ≤ (𝑀 · 2)))
179, 11, 15, 16syl3anc 1249 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑘𝑀 ↔ (𝑘 · 2) ≤ (𝑀 · 2)))
18 gausslemma2d.p . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ (ℙ ∖ {2}))
19 gausslemma2d.m . . . . . . . . . . . . . . 15 𝑀 = (⌊‘(𝑃 / 4))
2018, 19gausslemma2dlem0e 15111 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 · 2) < (𝑃 / 2))
2120adantl 277 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝜑) → (𝑀 · 2) < (𝑃 / 2))
2212a1i 9 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 2 ∈ ℝ)
238, 22remulcld 8040 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (𝑘 · 2) ∈ ℝ)
2423adantr 276 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑘 · 2) ∈ ℝ)
2512a1i 9 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → 2 ∈ ℝ)
2610, 25remulcld 8040 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → (𝑀 · 2) ∈ ℝ)
2726adantl 277 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑀 · 2) ∈ ℝ)
2818gausslemma2dlem0a 15107 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℕ)
2928nnred 8985 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℝ)
3029rehalfcld 9219 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 / 2) ∈ ℝ)
31 lelttr 8098 . . . . . . . . . . . . . 14 (((𝑘 · 2) ∈ ℝ ∧ (𝑀 · 2) ∈ ℝ ∧ (𝑃 / 2) ∈ ℝ) → (((𝑘 · 2) ≤ (𝑀 · 2) ∧ (𝑀 · 2) < (𝑃 / 2)) → (𝑘 · 2) < (𝑃 / 2)))
3224, 27, 30, 31syl2an3an 1309 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝜑) → (((𝑘 · 2) ≤ (𝑀 · 2) ∧ (𝑀 · 2) < (𝑃 / 2)) → (𝑘 · 2) < (𝑃 / 2)))
3321, 32mpan2d 428 . . . . . . . . . . . 12 (((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝜑) → ((𝑘 · 2) ≤ (𝑀 · 2) → (𝑘 · 2) < (𝑃 / 2)))
3433ex 115 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝜑 → ((𝑘 · 2) ≤ (𝑀 · 2) → (𝑘 · 2) < (𝑃 / 2))))
3534com23 78 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((𝑘 · 2) ≤ (𝑀 · 2) → (𝜑 → (𝑘 · 2) < (𝑃 / 2))))
3617, 35sylbid 150 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑘𝑀 → (𝜑 → (𝑘 · 2) < (𝑃 / 2))))
37363impia 1202 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑘𝑀) → (𝜑 → (𝑘 · 2) < (𝑃 / 2)))
387, 37sylbi 121 . . . . . . 7 (𝑘 ∈ (1...𝑀) → (𝜑 → (𝑘 · 2) < (𝑃 / 2)))
3938impcom 125 . . . . . 6 ((𝜑𝑘 ∈ (1...𝑀)) → (𝑘 · 2) < (𝑃 / 2))
4039adantr 276 . . . . 5 (((𝜑𝑘 ∈ (1...𝑀)) ∧ 𝑥 = 𝑘) → (𝑘 · 2) < (𝑃 / 2))
4140iftrued 3564 . . . 4 (((𝜑𝑘 ∈ (1...𝑀)) ∧ 𝑥 = 𝑘) → if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))) = (𝑘 · 2))
426, 41eqtrd 2226 . . 3 (((𝜑𝑘 ∈ (1...𝑀)) ∧ 𝑥 = 𝑘) → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = (𝑘 · 2))
4318, 19gausslemma2dlem0d 15110 . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
4443nn0zd 9427 . . . . . 6 (𝜑𝑀 ∈ ℤ)
45 gausslemma2d.h . . . . . . . 8 𝐻 = ((𝑃 − 1) / 2)
4618, 45gausslemma2dlem0b 15108 . . . . . . 7 (𝜑𝐻 ∈ ℕ)
4746nnzd 9428 . . . . . 6 (𝜑𝐻 ∈ ℤ)
4818, 19, 45gausslemma2dlem0g 15113 . . . . . 6 (𝜑𝑀𝐻)
49 eluz2 9588 . . . . . 6 (𝐻 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ 𝑀𝐻))
5044, 47, 48, 49syl3anbrc 1183 . . . . 5 (𝜑𝐻 ∈ (ℤ𝑀))
51 fzss2 10120 . . . . 5 (𝐻 ∈ (ℤ𝑀) → (1...𝑀) ⊆ (1...𝐻))
5250, 51syl 14 . . . 4 (𝜑 → (1...𝑀) ⊆ (1...𝐻))
5352sselda 3179 . . 3 ((𝜑𝑘 ∈ (1...𝑀)) → 𝑘 ∈ (1...𝐻))
5453elfzelzd 10082 . . . 4 ((𝜑𝑘 ∈ (1...𝑀)) → 𝑘 ∈ ℤ)
55 2z 9335 . . . . 5 2 ∈ ℤ
5655a1i 9 . . . 4 ((𝜑𝑘 ∈ (1...𝑀)) → 2 ∈ ℤ)
5754, 56zmulcld 9435 . . 3 ((𝜑𝑘 ∈ (1...𝑀)) → (𝑘 · 2) ∈ ℤ)
581, 42, 53, 57fvmptd2 5631 . 2 ((𝜑𝑘 ∈ (1...𝑀)) → (𝑅𝑘) = (𝑘 · 2))
5958ralrimiva 2567 1 (𝜑 → ∀𝑘 ∈ (1...𝑀)(𝑅𝑘) = (𝑘 · 2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  wral 2472  cdif 3150  wss 3153  ifcif 3557  {csn 3618   class class class wbr 4029  cmpt 4090  cfv 5246  (class class class)co 5910  cr 7861  0cc0 7862  1c1 7863   · cmul 7867   < clt 8044  cle 8045  cmin 8180   / cdiv 8681  cn 8972  2c2 9023  4c4 9025  cz 9307  cuz 9582  ...cfz 10064  cfl 10327  cprime 12232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4462  ax-setind 4565  ax-iinf 4616  ax-cnex 7953  ax-resscn 7954  ax-1cn 7955  ax-1re 7956  ax-icn 7957  ax-addcl 7958  ax-addrcl 7959  ax-mulcl 7960  ax-mulrcl 7961  ax-addcom 7962  ax-mulcom 7963  ax-addass 7964  ax-mulass 7965  ax-distr 7966  ax-i2m1 7967  ax-0lt1 7968  ax-1rid 7969  ax-0id 7970  ax-rnegex 7971  ax-precex 7972  ax-cnre 7973  ax-pre-ltirr 7974  ax-pre-ltwlin 7975  ax-pre-lttrn 7976  ax-pre-apti 7977  ax-pre-ltadd 7978  ax-pre-mulgt0 7979  ax-pre-mulext 7980  ax-arch 7981  ax-caucvg 7982
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4322  df-po 4325  df-iso 4326  df-iord 4395  df-on 4397  df-ilim 4398  df-suc 4400  df-iom 4619  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-iota 5207  df-fun 5248  df-fn 5249  df-f 5250  df-f1 5251  df-fo 5252  df-f1o 5253  df-fv 5254  df-riota 5865  df-ov 5913  df-oprab 5914  df-mpo 5915  df-1st 6184  df-2nd 6185  df-recs 6349  df-frec 6435  df-1o 6460  df-2o 6461  df-er 6578  df-en 6786  df-pnf 8046  df-mnf 8047  df-xr 8048  df-ltxr 8049  df-le 8050  df-sub 8182  df-neg 8183  df-reap 8584  df-ap 8591  df-div 8682  df-inn 8973  df-2 9031  df-3 9032  df-4 9033  df-n0 9231  df-z 9308  df-uz 9583  df-q 9675  df-rp 9710  df-fz 10065  df-fl 10329  df-seqfrec 10509  df-exp 10597  df-cj 10973  df-re 10974  df-im 10975  df-rsqrt 11129  df-abs 11130  df-dvds 11918  df-prm 12233
This theorem is referenced by:  gausslemma2dlem6  15125
  Copyright terms: Public domain W3C validator