ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gausslemma2dlem2 GIF version

Theorem gausslemma2dlem2 15270
Description: Lemma 2 for gausslemma2d 15277. (Contributed by AV, 4-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
gausslemma2d.m 𝑀 = (⌊‘(𝑃 / 4))
Assertion
Ref Expression
gausslemma2dlem2 (𝜑 → ∀𝑘 ∈ (1...𝑀)(𝑅𝑘) = (𝑘 · 2))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑘,𝐻   𝑅,𝑘   𝜑,𝑘   𝑥,𝑀   𝑥,𝑘
Allowed substitution hints:   𝑃(𝑘)   𝑅(𝑥)   𝑀(𝑘)

Proof of Theorem gausslemma2dlem2
StepHypRef Expression
1 gausslemma2d.r . . 3 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
2 oveq1 5929 . . . . . . 7 (𝑥 = 𝑘 → (𝑥 · 2) = (𝑘 · 2))
32breq1d 4043 . . . . . 6 (𝑥 = 𝑘 → ((𝑥 · 2) < (𝑃 / 2) ↔ (𝑘 · 2) < (𝑃 / 2)))
42oveq2d 5938 . . . . . 6 (𝑥 = 𝑘 → (𝑃 − (𝑥 · 2)) = (𝑃 − (𝑘 · 2)))
53, 2, 4ifbieq12d 3587 . . . . 5 (𝑥 = 𝑘 → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))))
65adantl 277 . . . 4 (((𝜑𝑘 ∈ (1...𝑀)) ∧ 𝑥 = 𝑘) → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))))
7 elfz1b 10162 . . . . . . . 8 (𝑘 ∈ (1...𝑀) ↔ (𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑘𝑀))
8 nnre 8994 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
98adantr 276 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → 𝑘 ∈ ℝ)
10 nnre 8994 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
1110adantl 277 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℝ)
12 2re 9057 . . . . . . . . . . . . 13 2 ∈ ℝ
13 2pos 9078 . . . . . . . . . . . . 13 0 < 2
1412, 13pm3.2i 272 . . . . . . . . . . . 12 (2 ∈ ℝ ∧ 0 < 2)
1514a1i 9 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (2 ∈ ℝ ∧ 0 < 2))
16 lemul1 8617 . . . . . . . . . . 11 ((𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝑘𝑀 ↔ (𝑘 · 2) ≤ (𝑀 · 2)))
179, 11, 15, 16syl3anc 1249 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑘𝑀 ↔ (𝑘 · 2) ≤ (𝑀 · 2)))
18 gausslemma2d.p . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ (ℙ ∖ {2}))
19 gausslemma2d.m . . . . . . . . . . . . . . 15 𝑀 = (⌊‘(𝑃 / 4))
2018, 19gausslemma2dlem0e 15261 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 · 2) < (𝑃 / 2))
2120adantl 277 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝜑) → (𝑀 · 2) < (𝑃 / 2))
2212a1i 9 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 2 ∈ ℝ)
238, 22remulcld 8055 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (𝑘 · 2) ∈ ℝ)
2423adantr 276 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑘 · 2) ∈ ℝ)
2512a1i 9 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → 2 ∈ ℝ)
2610, 25remulcld 8055 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → (𝑀 · 2) ∈ ℝ)
2726adantl 277 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑀 · 2) ∈ ℝ)
2818gausslemma2dlem0a 15257 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℕ)
2928nnred 9000 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℝ)
3029rehalfcld 9235 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 / 2) ∈ ℝ)
31 lelttr 8113 . . . . . . . . . . . . . 14 (((𝑘 · 2) ∈ ℝ ∧ (𝑀 · 2) ∈ ℝ ∧ (𝑃 / 2) ∈ ℝ) → (((𝑘 · 2) ≤ (𝑀 · 2) ∧ (𝑀 · 2) < (𝑃 / 2)) → (𝑘 · 2) < (𝑃 / 2)))
3224, 27, 30, 31syl2an3an 1309 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝜑) → (((𝑘 · 2) ≤ (𝑀 · 2) ∧ (𝑀 · 2) < (𝑃 / 2)) → (𝑘 · 2) < (𝑃 / 2)))
3321, 32mpan2d 428 . . . . . . . . . . . 12 (((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝜑) → ((𝑘 · 2) ≤ (𝑀 · 2) → (𝑘 · 2) < (𝑃 / 2)))
3433ex 115 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝜑 → ((𝑘 · 2) ≤ (𝑀 · 2) → (𝑘 · 2) < (𝑃 / 2))))
3534com23 78 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((𝑘 · 2) ≤ (𝑀 · 2) → (𝜑 → (𝑘 · 2) < (𝑃 / 2))))
3617, 35sylbid 150 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑘𝑀 → (𝜑 → (𝑘 · 2) < (𝑃 / 2))))
37363impia 1202 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑘𝑀) → (𝜑 → (𝑘 · 2) < (𝑃 / 2)))
387, 37sylbi 121 . . . . . . 7 (𝑘 ∈ (1...𝑀) → (𝜑 → (𝑘 · 2) < (𝑃 / 2)))
3938impcom 125 . . . . . 6 ((𝜑𝑘 ∈ (1...𝑀)) → (𝑘 · 2) < (𝑃 / 2))
4039adantr 276 . . . . 5 (((𝜑𝑘 ∈ (1...𝑀)) ∧ 𝑥 = 𝑘) → (𝑘 · 2) < (𝑃 / 2))
4140iftrued 3568 . . . 4 (((𝜑𝑘 ∈ (1...𝑀)) ∧ 𝑥 = 𝑘) → if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))) = (𝑘 · 2))
426, 41eqtrd 2229 . . 3 (((𝜑𝑘 ∈ (1...𝑀)) ∧ 𝑥 = 𝑘) → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = (𝑘 · 2))
4318, 19gausslemma2dlem0d 15260 . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
4443nn0zd 9443 . . . . . 6 (𝜑𝑀 ∈ ℤ)
45 gausslemma2d.h . . . . . . . 8 𝐻 = ((𝑃 − 1) / 2)
4618, 45gausslemma2dlem0b 15258 . . . . . . 7 (𝜑𝐻 ∈ ℕ)
4746nnzd 9444 . . . . . 6 (𝜑𝐻 ∈ ℤ)
4818, 19, 45gausslemma2dlem0g 15263 . . . . . 6 (𝜑𝑀𝐻)
49 eluz2 9604 . . . . . 6 (𝐻 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ 𝑀𝐻))
5044, 47, 48, 49syl3anbrc 1183 . . . . 5 (𝜑𝐻 ∈ (ℤ𝑀))
51 fzss2 10136 . . . . 5 (𝐻 ∈ (ℤ𝑀) → (1...𝑀) ⊆ (1...𝐻))
5250, 51syl 14 . . . 4 (𝜑 → (1...𝑀) ⊆ (1...𝐻))
5352sselda 3183 . . 3 ((𝜑𝑘 ∈ (1...𝑀)) → 𝑘 ∈ (1...𝐻))
5453elfzelzd 10098 . . . 4 ((𝜑𝑘 ∈ (1...𝑀)) → 𝑘 ∈ ℤ)
55 2z 9351 . . . . 5 2 ∈ ℤ
5655a1i 9 . . . 4 ((𝜑𝑘 ∈ (1...𝑀)) → 2 ∈ ℤ)
5754, 56zmulcld 9451 . . 3 ((𝜑𝑘 ∈ (1...𝑀)) → (𝑘 · 2) ∈ ℤ)
581, 42, 53, 57fvmptd2 5643 . 2 ((𝜑𝑘 ∈ (1...𝑀)) → (𝑅𝑘) = (𝑘 · 2))
5958ralrimiva 2570 1 (𝜑 → ∀𝑘 ∈ (1...𝑀)(𝑅𝑘) = (𝑘 · 2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  wral 2475  cdif 3154  wss 3157  ifcif 3561  {csn 3622   class class class wbr 4033  cmpt 4094  cfv 5258  (class class class)co 5922  cr 7876  0cc0 7877  1c1 7878   · cmul 7882   < clt 8059  cle 8060  cmin 8195   / cdiv 8696  cn 8987  2c2 9038  4c4 9040  cz 9323  cuz 9598  ...cfz 10080  cfl 10343  cprime 12251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-mulrcl 7976  ax-addcom 7977  ax-mulcom 7978  ax-addass 7979  ax-mulass 7980  ax-distr 7981  ax-i2m1 7982  ax-0lt1 7983  ax-1rid 7984  ax-0id 7985  ax-rnegex 7986  ax-precex 7987  ax-cnre 7988  ax-pre-ltirr 7989  ax-pre-ltwlin 7990  ax-pre-lttrn 7991  ax-pre-apti 7992  ax-pre-ltadd 7993  ax-pre-mulgt0 7994  ax-pre-mulext 7995  ax-arch 7996  ax-caucvg 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-2o 6475  df-er 6592  df-en 6800  df-pnf 8061  df-mnf 8062  df-xr 8063  df-ltxr 8064  df-le 8065  df-sub 8197  df-neg 8198  df-reap 8599  df-ap 8606  df-div 8697  df-inn 8988  df-2 9046  df-3 9047  df-4 9048  df-n0 9247  df-z 9324  df-uz 9599  df-q 9691  df-rp 9726  df-fz 10081  df-fl 10345  df-seqfrec 10525  df-exp 10616  df-cj 10992  df-re 10993  df-im 10994  df-rsqrt 11148  df-abs 11149  df-dvds 11937  df-prm 12252
This theorem is referenced by:  gausslemma2dlem6  15275
  Copyright terms: Public domain W3C validator