ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gausslemma2dlem3 GIF version

Theorem gausslemma2dlem3 15590
Description: Lemma 3 for gausslemma2d 15596. (Contributed by AV, 4-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
gausslemma2d.m 𝑀 = (⌊‘(𝑃 / 4))
Assertion
Ref Expression
gausslemma2dlem3 (𝜑 → ∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑘,𝐻   𝑅,𝑘   𝜑,𝑘   𝑥,𝑀   𝑥,𝑘
Allowed substitution hints:   𝑃(𝑘)   𝑅(𝑥)   𝑀(𝑘)

Proof of Theorem gausslemma2dlem3
StepHypRef Expression
1 gausslemma2d.r . . 3 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
2 oveq1 5961 . . . . . . 7 (𝑥 = 𝑘 → (𝑥 · 2) = (𝑘 · 2))
32breq1d 4058 . . . . . 6 (𝑥 = 𝑘 → ((𝑥 · 2) < (𝑃 / 2) ↔ (𝑘 · 2) < (𝑃 / 2)))
42oveq2d 5970 . . . . . 6 (𝑥 = 𝑘 → (𝑃 − (𝑥 · 2)) = (𝑃 − (𝑘 · 2)))
53, 2, 4ifbieq12d 3599 . . . . 5 (𝑥 = 𝑘 → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))))
65adantl 277 . . . 4 (((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) ∧ 𝑥 = 𝑘) → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))))
7 gausslemma2d.p . . . . . . . 8 (𝜑𝑃 ∈ (ℙ ∖ {2}))
87gausslemma2dlem0a 15576 . . . . . . 7 (𝜑𝑃 ∈ ℕ)
9 elfz2 10150 . . . . . . . . . 10 (𝑘 ∈ ((𝑀 + 1)...𝐻) ↔ (((𝑀 + 1) ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑘𝑘𝐻)))
10 gausslemma2d.m . . . . . . . . . . . . . . . . 17 𝑀 = (⌊‘(𝑃 / 4))
1110oveq1i 5964 . . . . . . . . . . . . . . . 16 (𝑀 + 1) = ((⌊‘(𝑃 / 4)) + 1)
1211breq1i 4055 . . . . . . . . . . . . . . 15 ((𝑀 + 1) ≤ 𝑘 ↔ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘)
13 nnz 9404 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
14 4nn 9213 . . . . . . . . . . . . . . . . . . . . . . 23 4 ∈ ℕ
15 znq 9758 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 ∈ ℤ ∧ 4 ∈ ℕ) → (𝑃 / 4) ∈ ℚ)
1613, 14, 15sylancl 413 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℕ → (𝑃 / 4) ∈ ℚ)
1716adantl 277 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑃 / 4) ∈ ℚ)
18 flqlelt 10432 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 / 4) ∈ ℚ → ((⌊‘(𝑃 / 4)) ≤ (𝑃 / 4) ∧ (𝑃 / 4) < ((⌊‘(𝑃 / 4)) + 1)))
1917, 18syl 14 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((⌊‘(𝑃 / 4)) ≤ (𝑃 / 4) ∧ (𝑃 / 4) < ((⌊‘(𝑃 / 4)) + 1)))
20 nnre 9056 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ)
21 4re 9126 . . . . . . . . . . . . . . . . . . . . . . . . . 26 4 ∈ ℝ
2221a1i 9 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ ℕ → 4 ∈ ℝ)
23 4ap0 9148 . . . . . . . . . . . . . . . . . . . . . . . . . 26 4 # 0
2423a1i 9 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ ℕ → 4 # 0)
2520, 22, 24redivclapd 8921 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑃 ∈ ℕ → (𝑃 / 4) ∈ ℝ)
2625adantl 277 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑃 / 4) ∈ ℝ)
2716flqcld 10433 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℕ → (⌊‘(𝑃 / 4)) ∈ ℤ)
2827zred 9508 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ ℕ → (⌊‘(𝑃 / 4)) ∈ ℝ)
29 peano2re 8221 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((⌊‘(𝑃 / 4)) ∈ ℝ → ((⌊‘(𝑃 / 4)) + 1) ∈ ℝ)
3028, 29syl 14 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑃 ∈ ℕ → ((⌊‘(𝑃 / 4)) + 1) ∈ ℝ)
3130adantl 277 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((⌊‘(𝑃 / 4)) + 1) ∈ ℝ)
32 zre 9389 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
3332adantr 276 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → 𝑘 ∈ ℝ)
34 ltleletr 8167 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃 / 4) ∈ ℝ ∧ ((⌊‘(𝑃 / 4)) + 1) ∈ ℝ ∧ 𝑘 ∈ ℝ) → (((𝑃 / 4) < ((⌊‘(𝑃 / 4)) + 1) ∧ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘) → (𝑃 / 4) ≤ 𝑘))
3526, 31, 33, 34syl3anc 1250 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (((𝑃 / 4) < ((⌊‘(𝑃 / 4)) + 1) ∧ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘) → (𝑃 / 4) ≤ 𝑘))
3635expd 258 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((𝑃 / 4) < ((⌊‘(𝑃 / 4)) + 1) → (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘 → (𝑃 / 4) ≤ 𝑘)))
3736adantld 278 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (((⌊‘(𝑃 / 4)) ≤ (𝑃 / 4) ∧ (𝑃 / 4) < ((⌊‘(𝑃 / 4)) + 1)) → (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘 → (𝑃 / 4) ≤ 𝑘)))
3819, 37mpd 13 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘 → (𝑃 / 4) ≤ 𝑘))
3938imp 124 . . . . . . . . . . . . . . . . . 18 (((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) ∧ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘) → (𝑃 / 4) ≤ 𝑘)
4020rehalfcld 9297 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℕ → (𝑃 / 2) ∈ ℝ)
4140adantl 277 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑃 / 2) ∈ ℝ)
42 2re 9119 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ∈ ℝ
4342a1i 9 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ ℤ → 2 ∈ ℝ)
4432, 43remulcld 8116 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → (𝑘 · 2) ∈ ℝ)
4544adantr 276 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑘 · 2) ∈ ℝ)
46 2pos 9140 . . . . . . . . . . . . . . . . . . . . . . 23 0 < 2
4742, 46pm3.2i 272 . . . . . . . . . . . . . . . . . . . . . 22 (2 ∈ ℝ ∧ 0 < 2)
4847a1i 9 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (2 ∈ ℝ ∧ 0 < 2))
49 lediv1 8955 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃 / 2) ∈ ℝ ∧ (𝑘 · 2) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑃 / 2) ≤ (𝑘 · 2) ↔ ((𝑃 / 2) / 2) ≤ ((𝑘 · 2) / 2)))
5041, 45, 48, 49syl3anc 1250 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((𝑃 / 2) ≤ (𝑘 · 2) ↔ ((𝑃 / 2) / 2) ≤ ((𝑘 · 2) / 2)))
51 nncn 9057 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℕ → 𝑃 ∈ ℂ)
52 2cnd 9122 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℕ → 2 ∈ ℂ)
53 2ap0 9142 . . . . . . . . . . . . . . . . . . . . . . . 24 2 # 0
5453a1i 9 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℕ → 2 # 0)
5551, 52, 52, 54, 54divdivap1d 8908 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℕ → ((𝑃 / 2) / 2) = (𝑃 / (2 · 2)))
56 2t2e4 9204 . . . . . . . . . . . . . . . . . . . . . . 23 (2 · 2) = 4
5756oveq2i 5965 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 / (2 · 2)) = (𝑃 / 4)
5855, 57eqtrdi 2255 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℕ → ((𝑃 / 2) / 2) = (𝑃 / 4))
59 zcn 9390 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
60 2cnd 9122 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → 2 ∈ ℂ)
6153a1i 9 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → 2 # 0)
6259, 60, 61divcanap4d 8882 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℤ → ((𝑘 · 2) / 2) = 𝑘)
6358, 62breqan12rd 4065 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (((𝑃 / 2) / 2) ≤ ((𝑘 · 2) / 2) ↔ (𝑃 / 4) ≤ 𝑘))
6450, 63bitrd 188 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((𝑃 / 2) ≤ (𝑘 · 2) ↔ (𝑃 / 4) ≤ 𝑘))
6564adantr 276 . . . . . . . . . . . . . . . . . 18 (((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) ∧ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘) → ((𝑃 / 2) ≤ (𝑘 · 2) ↔ (𝑃 / 4) ≤ 𝑘))
6639, 65mpbird 167 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) ∧ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘) → (𝑃 / 2) ≤ (𝑘 · 2))
6766exp31 364 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℤ → (𝑃 ∈ ℕ → (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘 → (𝑃 / 2) ≤ (𝑘 · 2))))
6867com23 78 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℤ → (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘 → (𝑃 ∈ ℕ → (𝑃 / 2) ≤ (𝑘 · 2))))
6912, 68biimtrid 152 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ → ((𝑀 + 1) ≤ 𝑘 → (𝑃 ∈ ℕ → (𝑃 / 2) ≤ (𝑘 · 2))))
70693ad2ant3 1023 . . . . . . . . . . . . 13 (((𝑀 + 1) ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑘 → (𝑃 ∈ ℕ → (𝑃 / 2) ≤ (𝑘 · 2))))
7170com12 30 . . . . . . . . . . . 12 ((𝑀 + 1) ≤ 𝑘 → (((𝑀 + 1) ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑃 ∈ ℕ → (𝑃 / 2) ≤ (𝑘 · 2))))
7271adantr 276 . . . . . . . . . . 11 (((𝑀 + 1) ≤ 𝑘𝑘𝐻) → (((𝑀 + 1) ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑃 ∈ ℕ → (𝑃 / 2) ≤ (𝑘 · 2))))
7372impcom 125 . . . . . . . . . 10 ((((𝑀 + 1) ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑘𝑘𝐻)) → (𝑃 ∈ ℕ → (𝑃 / 2) ≤ (𝑘 · 2)))
749, 73sylbi 121 . . . . . . . . 9 (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑃 ∈ ℕ → (𝑃 / 2) ≤ (𝑘 · 2)))
7574impcom 125 . . . . . . . 8 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑃 / 2) ≤ (𝑘 · 2))
76 elfzelz 10160 . . . . . . . . . . 11 (𝑘 ∈ ((𝑀 + 1)...𝐻) → 𝑘 ∈ ℤ)
7776zred 9508 . . . . . . . . . 10 (𝑘 ∈ ((𝑀 + 1)...𝐻) → 𝑘 ∈ ℝ)
7842a1i 9 . . . . . . . . . 10 (𝑘 ∈ ((𝑀 + 1)...𝐻) → 2 ∈ ℝ)
7977, 78remulcld 8116 . . . . . . . . 9 (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℝ)
80 lenlt 8161 . . . . . . . . 9 (((𝑃 / 2) ∈ ℝ ∧ (𝑘 · 2) ∈ ℝ) → ((𝑃 / 2) ≤ (𝑘 · 2) ↔ ¬ (𝑘 · 2) < (𝑃 / 2)))
8140, 79, 80syl2an 289 . . . . . . . 8 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → ((𝑃 / 2) ≤ (𝑘 · 2) ↔ ¬ (𝑘 · 2) < (𝑃 / 2)))
8275, 81mpbid 147 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → ¬ (𝑘 · 2) < (𝑃 / 2))
838, 82sylan 283 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → ¬ (𝑘 · 2) < (𝑃 / 2))
8483adantr 276 . . . . 5 (((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) ∧ 𝑥 = 𝑘) → ¬ (𝑘 · 2) < (𝑃 / 2))
8584iffalsed 3583 . . . 4 (((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) ∧ 𝑥 = 𝑘) → if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))) = (𝑃 − (𝑘 · 2)))
866, 85eqtrd 2239 . . 3 (((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) ∧ 𝑥 = 𝑘) → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = (𝑃 − (𝑘 · 2)))
877, 10gausslemma2dlem0d 15579 . . . . . 6 (𝜑𝑀 ∈ ℕ0)
88 nn0p1nn 9347 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ)
89 nnuz 9697 . . . . . . 7 ℕ = (ℤ‘1)
9088, 89eleqtrdi 2299 . . . . . 6 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ (ℤ‘1))
9187, 90syl 14 . . . . 5 (𝜑 → (𝑀 + 1) ∈ (ℤ‘1))
92 fzss1 10198 . . . . 5 ((𝑀 + 1) ∈ (ℤ‘1) → ((𝑀 + 1)...𝐻) ⊆ (1...𝐻))
9391, 92syl 14 . . . 4 (𝜑 → ((𝑀 + 1)...𝐻) ⊆ (1...𝐻))
9493sselda 3195 . . 3 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → 𝑘 ∈ (1...𝐻))
958nnzd 9507 . . . . 5 (𝜑𝑃 ∈ ℤ)
9695adantr 276 . . . 4 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → 𝑃 ∈ ℤ)
9776adantl 277 . . . . 5 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → 𝑘 ∈ ℤ)
98 2z 9413 . . . . . 6 2 ∈ ℤ
9998a1i 9 . . . . 5 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → 2 ∈ ℤ)
10097, 99zmulcld 9514 . . . 4 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑘 · 2) ∈ ℤ)
10196, 100zsubcld 9513 . . 3 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑃 − (𝑘 · 2)) ∈ ℤ)
1021, 86, 94, 101fvmptd2 5671 . 2 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑅𝑘) = (𝑃 − (𝑘 · 2)))
103102ralrimiva 2580 1 (𝜑 → ∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177  wral 2485  cdif 3165  wss 3168  ifcif 3573  {csn 3635   class class class wbr 4048  cmpt 4110  cfv 5277  (class class class)co 5954  cr 7937  0cc0 7938  1c1 7939   + caddc 7941   · cmul 7943   < clt 8120  cle 8121  cmin 8256   # cap 8667   / cdiv 8758  cn 9049  2c2 9100  4c4 9102  0cn0 9308  cz 9385  cuz 9661  cq 9753  ...cfz 10143  cfl 10424  cprime 12479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-mulrcl 8037  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-precex 8048  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-apti 8053  ax-pre-ltadd 8054  ax-pre-mulgt0 8055  ax-pre-mulext 8056  ax-arch 8057  ax-caucvg 8058
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-if 3574  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-po 4348  df-iso 4349  df-iord 4418  df-on 4420  df-ilim 4421  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-frec 6487  df-1o 6512  df-2o 6513  df-er 6630  df-en 6838  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-reap 8661  df-ap 8668  df-div 8759  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-n0 9309  df-z 9386  df-uz 9662  df-q 9754  df-rp 9789  df-fz 10144  df-fl 10426  df-seqfrec 10606  df-exp 10697  df-cj 11203  df-re 11204  df-im 11205  df-rsqrt 11359  df-abs 11360  df-dvds 12149  df-prm 12480
This theorem is referenced by:  gausslemma2dlem5a  15592  gausslemma2dlem6  15594
  Copyright terms: Public domain W3C validator