ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrest GIF version

Theorem elrest 12586
Description: The predicate "is an open set of a subspace topology". (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Assertion
Ref Expression
elrest ((𝐽𝑉𝐵𝑊) → (𝐴 ∈ (𝐽t 𝐵) ↔ ∃𝑥𝐽 𝐴 = (𝑥𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐽
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem elrest
StepHypRef Expression
1 restval 12585 . . 3 ((𝐽𝑉𝐵𝑊) → (𝐽t 𝐵) = ran (𝑥𝐽 ↦ (𝑥𝐵)))
21eleq2d 2240 . 2 ((𝐽𝑉𝐵𝑊) → (𝐴 ∈ (𝐽t 𝐵) ↔ 𝐴 ∈ ran (𝑥𝐽 ↦ (𝑥𝐵))))
3 eqid 2170 . . 3 (𝑥𝐽 ↦ (𝑥𝐵)) = (𝑥𝐽 ↦ (𝑥𝐵))
4 vex 2733 . . . 4 𝑥 ∈ V
54inex1 4123 . . 3 (𝑥𝐵) ∈ V
63, 5elrnmpti 4864 . 2 (𝐴 ∈ ran (𝑥𝐽 ↦ (𝑥𝐵)) ↔ ∃𝑥𝐽 𝐴 = (𝑥𝐵))
72, 6bitrdi 195 1 ((𝐽𝑉𝐵𝑊) → (𝐴 ∈ (𝐽t 𝐵) ↔ ∃𝑥𝐽 𝐴 = (𝑥𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  wrex 2449  cin 3120  cmpt 4050  ran crn 4612  (class class class)co 5853  t crest 12579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-rest 12581
This theorem is referenced by:  elrestr  12587  restsspw  12589  restbasg  12962  restsn  12974  restopnb  12975  ssrest  12976  cnrest2  13030  cnptopresti  13032  cnptoprest  13033  cnptoprest2  13034  lmss  13040  txrest  13070  metrest  13300
  Copyright terms: Public domain W3C validator