ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrest GIF version

Theorem elrest 13265
Description: The predicate "is an open set of a subspace topology". (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Assertion
Ref Expression
elrest ((𝐽𝑉𝐵𝑊) → (𝐴 ∈ (𝐽t 𝐵) ↔ ∃𝑥𝐽 𝐴 = (𝑥𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐽
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem elrest
StepHypRef Expression
1 restval 13264 . . 3 ((𝐽𝑉𝐵𝑊) → (𝐽t 𝐵) = ran (𝑥𝐽 ↦ (𝑥𝐵)))
21eleq2d 2299 . 2 ((𝐽𝑉𝐵𝑊) → (𝐴 ∈ (𝐽t 𝐵) ↔ 𝐴 ∈ ran (𝑥𝐽 ↦ (𝑥𝐵))))
3 eqid 2229 . . 3 (𝑥𝐽 ↦ (𝑥𝐵)) = (𝑥𝐽 ↦ (𝑥𝐵))
4 vex 2802 . . . 4 𝑥 ∈ V
54inex1 4217 . . 3 (𝑥𝐵) ∈ V
63, 5elrnmpti 4973 . 2 (𝐴 ∈ ran (𝑥𝐽 ↦ (𝑥𝐵)) ↔ ∃𝑥𝐽 𝐴 = (𝑥𝐵))
72, 6bitrdi 196 1 ((𝐽𝑉𝐵𝑊) → (𝐴 ∈ (𝐽t 𝐵) ↔ ∃𝑥𝐽 𝐴 = (𝑥𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wrex 2509  cin 3196  cmpt 4144  ran crn 4717  (class class class)co 5994  t crest 13258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-rest 13260
This theorem is referenced by:  elrestr  13266  restsspw  13268  restbasg  14827  restsn  14839  restopnb  14840  ssrest  14841  cnrest2  14895  cnptopresti  14897  cnptoprest  14898  cnptoprest2  14899  lmss  14905  txrest  14935  metrest  15165
  Copyright terms: Public domain W3C validator