Step | Hyp | Ref
| Expression |
1 | | infregelbex.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ℝ) |
2 | 1 | ad2antrr 485 |
. . . . 5
⊢ (((𝜑 ∧ 𝐵 ≤ inf(𝐴, ℝ, < )) ∧ 𝑎 ∈ 𝐴) → 𝐵 ∈ ℝ) |
3 | | lttri3 7999 |
. . . . . . . 8
⊢ ((𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (𝑏 = 𝑐 ↔ (¬ 𝑏 < 𝑐 ∧ ¬ 𝑐 < 𝑏))) |
4 | 3 | adantl 275 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ)) → (𝑏 = 𝑐 ↔ (¬ 𝑏 < 𝑐 ∧ ¬ 𝑐 < 𝑏))) |
5 | | infregelbex.ex |
. . . . . . 7
⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
6 | 4, 5 | infclti 7000 |
. . . . . 6
⊢ (𝜑 → inf(𝐴, ℝ, < ) ∈
ℝ) |
7 | 6 | ad2antrr 485 |
. . . . 5
⊢ (((𝜑 ∧ 𝐵 ≤ inf(𝐴, ℝ, < )) ∧ 𝑎 ∈ 𝐴) → inf(𝐴, ℝ, < ) ∈
ℝ) |
8 | | infregelbex.ss |
. . . . . . 7
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
9 | 8 | sselda 3147 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ ℝ) |
10 | 9 | adantlr 474 |
. . . . 5
⊢ (((𝜑 ∧ 𝐵 ≤ inf(𝐴, ℝ, < )) ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ ℝ) |
11 | | simplr 525 |
. . . . 5
⊢ (((𝜑 ∧ 𝐵 ≤ inf(𝐴, ℝ, < )) ∧ 𝑎 ∈ 𝐴) → 𝐵 ≤ inf(𝐴, ℝ, < )) |
12 | 6 | adantr 274 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → inf(𝐴, ℝ, < ) ∈
ℝ) |
13 | 4, 5 | inflbti 7001 |
. . . . . . . 8
⊢ (𝜑 → (𝑎 ∈ 𝐴 → ¬ 𝑎 < inf(𝐴, ℝ, < ))) |
14 | 13 | imp 123 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ¬ 𝑎 < inf(𝐴, ℝ, < )) |
15 | 12, 9, 14 | nltled 8040 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → inf(𝐴, ℝ, < ) ≤ 𝑎) |
16 | 15 | adantlr 474 |
. . . . 5
⊢ (((𝜑 ∧ 𝐵 ≤ inf(𝐴, ℝ, < )) ∧ 𝑎 ∈ 𝐴) → inf(𝐴, ℝ, < ) ≤ 𝑎) |
17 | 2, 7, 10, 11, 16 | letrd 8043 |
. . . 4
⊢ (((𝜑 ∧ 𝐵 ≤ inf(𝐴, ℝ, < )) ∧ 𝑎 ∈ 𝐴) → 𝐵 ≤ 𝑎) |
18 | 17 | ralrimiva 2543 |
. . 3
⊢ ((𝜑 ∧ 𝐵 ≤ inf(𝐴, ℝ, < )) → ∀𝑎 ∈ 𝐴 𝐵 ≤ 𝑎) |
19 | | breq2 3993 |
. . . 4
⊢ (𝑎 = 𝑧 → (𝐵 ≤ 𝑎 ↔ 𝐵 ≤ 𝑧)) |
20 | 19 | cbvralv 2696 |
. . 3
⊢
(∀𝑎 ∈
𝐴 𝐵 ≤ 𝑎 ↔ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) |
21 | 18, 20 | sylib 121 |
. 2
⊢ ((𝜑 ∧ 𝐵 ≤ inf(𝐴, ℝ, < )) → ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) |
22 | 1 | adantr 274 |
. . 3
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) → 𝐵 ∈ ℝ) |
23 | 6 | adantr 274 |
. . 3
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) → inf(𝐴, ℝ, < ) ∈
ℝ) |
24 | | simpl 108 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) → 𝜑) |
25 | | simpr 109 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) → ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) |
26 | | breq2 3993 |
. . . . . . . . 9
⊢ (𝑧 = 𝑑 → (𝐵 ≤ 𝑧 ↔ 𝐵 ≤ 𝑑)) |
27 | 26 | cbvralv 2696 |
. . . . . . . 8
⊢
(∀𝑧 ∈
𝐴 𝐵 ≤ 𝑧 ↔ ∀𝑑 ∈ 𝐴 𝐵 ≤ 𝑑) |
28 | 25, 27 | sylib 121 |
. . . . . . 7
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) → ∀𝑑 ∈ 𝐴 𝐵 ≤ 𝑑) |
29 | 1 | ad2antrr 485 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) ∧ 𝑑 ∈ 𝐴) → 𝐵 ∈ ℝ) |
30 | 8 | ad2antrr 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) ∧ 𝑑 ∈ 𝐴) → 𝐴 ⊆ ℝ) |
31 | | simpr 109 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) ∧ 𝑑 ∈ 𝐴) → 𝑑 ∈ 𝐴) |
32 | 30, 31 | sseldd 3148 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) ∧ 𝑑 ∈ 𝐴) → 𝑑 ∈ ℝ) |
33 | 29, 32 | lenltd 8037 |
. . . . . . . 8
⊢ (((𝜑 ∧ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) ∧ 𝑑 ∈ 𝐴) → (𝐵 ≤ 𝑑 ↔ ¬ 𝑑 < 𝐵)) |
34 | 33 | ralbidva 2466 |
. . . . . . 7
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) → (∀𝑑 ∈ 𝐴 𝐵 ≤ 𝑑 ↔ ∀𝑑 ∈ 𝐴 ¬ 𝑑 < 𝐵)) |
35 | 28, 34 | mpbid 146 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) → ∀𝑑 ∈ 𝐴 ¬ 𝑑 < 𝐵) |
36 | | breq1 3992 |
. . . . . . . 8
⊢ (𝑑 = 𝑧 → (𝑑 < 𝐵 ↔ 𝑧 < 𝐵)) |
37 | 36 | notbid 662 |
. . . . . . 7
⊢ (𝑑 = 𝑧 → (¬ 𝑑 < 𝐵 ↔ ¬ 𝑧 < 𝐵)) |
38 | 37 | cbvralv 2696 |
. . . . . 6
⊢
(∀𝑑 ∈
𝐴 ¬ 𝑑 < 𝐵 ↔ ∀𝑧 ∈ 𝐴 ¬ 𝑧 < 𝐵) |
39 | 35, 38 | sylib 121 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) → ∀𝑧 ∈ 𝐴 ¬ 𝑧 < 𝐵) |
40 | 22, 39 | jca 304 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) → (𝐵 ∈ ℝ ∧ ∀𝑧 ∈ 𝐴 ¬ 𝑧 < 𝐵)) |
41 | 4, 5 | infnlbti 7003 |
. . . 4
⊢ (𝜑 → ((𝐵 ∈ ℝ ∧ ∀𝑧 ∈ 𝐴 ¬ 𝑧 < 𝐵) → ¬ inf(𝐴, ℝ, < ) < 𝐵)) |
42 | 24, 40, 41 | sylc 62 |
. . 3
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) → ¬ inf(𝐴, ℝ, < ) < 𝐵) |
43 | 22, 23, 42 | nltled 8040 |
. 2
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) → 𝐵 ≤ inf(𝐴, ℝ, < )) |
44 | 21, 43 | impbida 591 |
1
⊢ (𝜑 → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧)) |