ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infregelbex GIF version

Theorem infregelbex 9612
Description: Any lower bound of a set of real numbers with an infimum is less than or equal to the infimum. (Contributed by Jim Kingdon, 27-Sep-2024.)
Hypotheses
Ref Expression
infregelbex.ex (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
infregelbex.ss (𝜑𝐴 ⊆ ℝ)
infregelbex.b (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
infregelbex (𝜑 → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑧𝐴 𝐵𝑧))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧

Proof of Theorem infregelbex
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infregelbex.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
21ad2antrr 488 . . . . 5 (((𝜑𝐵 ≤ inf(𝐴, ℝ, < )) ∧ 𝑎𝐴) → 𝐵 ∈ ℝ)
3 lttri3 8051 . . . . . . . 8 ((𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (𝑏 = 𝑐 ↔ (¬ 𝑏 < 𝑐 ∧ ¬ 𝑐 < 𝑏)))
43adantl 277 . . . . . . 7 ((𝜑 ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ)) → (𝑏 = 𝑐 ↔ (¬ 𝑏 < 𝑐 ∧ ¬ 𝑐 < 𝑏)))
5 infregelbex.ex . . . . . . 7 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
64, 5infclti 7036 . . . . . 6 (𝜑 → inf(𝐴, ℝ, < ) ∈ ℝ)
76ad2antrr 488 . . . . 5 (((𝜑𝐵 ≤ inf(𝐴, ℝ, < )) ∧ 𝑎𝐴) → inf(𝐴, ℝ, < ) ∈ ℝ)
8 infregelbex.ss . . . . . . 7 (𝜑𝐴 ⊆ ℝ)
98sselda 3167 . . . . . 6 ((𝜑𝑎𝐴) → 𝑎 ∈ ℝ)
109adantlr 477 . . . . 5 (((𝜑𝐵 ≤ inf(𝐴, ℝ, < )) ∧ 𝑎𝐴) → 𝑎 ∈ ℝ)
11 simplr 528 . . . . 5 (((𝜑𝐵 ≤ inf(𝐴, ℝ, < )) ∧ 𝑎𝐴) → 𝐵 ≤ inf(𝐴, ℝ, < ))
126adantr 276 . . . . . . 7 ((𝜑𝑎𝐴) → inf(𝐴, ℝ, < ) ∈ ℝ)
134, 5inflbti 7037 . . . . . . . 8 (𝜑 → (𝑎𝐴 → ¬ 𝑎 < inf(𝐴, ℝ, < )))
1413imp 124 . . . . . . 7 ((𝜑𝑎𝐴) → ¬ 𝑎 < inf(𝐴, ℝ, < ))
1512, 9, 14nltled 8092 . . . . . 6 ((𝜑𝑎𝐴) → inf(𝐴, ℝ, < ) ≤ 𝑎)
1615adantlr 477 . . . . 5 (((𝜑𝐵 ≤ inf(𝐴, ℝ, < )) ∧ 𝑎𝐴) → inf(𝐴, ℝ, < ) ≤ 𝑎)
172, 7, 10, 11, 16letrd 8095 . . . 4 (((𝜑𝐵 ≤ inf(𝐴, ℝ, < )) ∧ 𝑎𝐴) → 𝐵𝑎)
1817ralrimiva 2560 . . 3 ((𝜑𝐵 ≤ inf(𝐴, ℝ, < )) → ∀𝑎𝐴 𝐵𝑎)
19 breq2 4019 . . . 4 (𝑎 = 𝑧 → (𝐵𝑎𝐵𝑧))
2019cbvralv 2715 . . 3 (∀𝑎𝐴 𝐵𝑎 ↔ ∀𝑧𝐴 𝐵𝑧)
2118, 20sylib 122 . 2 ((𝜑𝐵 ≤ inf(𝐴, ℝ, < )) → ∀𝑧𝐴 𝐵𝑧)
221adantr 276 . . 3 ((𝜑 ∧ ∀𝑧𝐴 𝐵𝑧) → 𝐵 ∈ ℝ)
236adantr 276 . . 3 ((𝜑 ∧ ∀𝑧𝐴 𝐵𝑧) → inf(𝐴, ℝ, < ) ∈ ℝ)
24 simpl 109 . . . 4 ((𝜑 ∧ ∀𝑧𝐴 𝐵𝑧) → 𝜑)
25 simpr 110 . . . . . . . 8 ((𝜑 ∧ ∀𝑧𝐴 𝐵𝑧) → ∀𝑧𝐴 𝐵𝑧)
26 breq2 4019 . . . . . . . . 9 (𝑧 = 𝑑 → (𝐵𝑧𝐵𝑑))
2726cbvralv 2715 . . . . . . . 8 (∀𝑧𝐴 𝐵𝑧 ↔ ∀𝑑𝐴 𝐵𝑑)
2825, 27sylib 122 . . . . . . 7 ((𝜑 ∧ ∀𝑧𝐴 𝐵𝑧) → ∀𝑑𝐴 𝐵𝑑)
291ad2antrr 488 . . . . . . . . 9 (((𝜑 ∧ ∀𝑧𝐴 𝐵𝑧) ∧ 𝑑𝐴) → 𝐵 ∈ ℝ)
308ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑧𝐴 𝐵𝑧) ∧ 𝑑𝐴) → 𝐴 ⊆ ℝ)
31 simpr 110 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑧𝐴 𝐵𝑧) ∧ 𝑑𝐴) → 𝑑𝐴)
3230, 31sseldd 3168 . . . . . . . . 9 (((𝜑 ∧ ∀𝑧𝐴 𝐵𝑧) ∧ 𝑑𝐴) → 𝑑 ∈ ℝ)
3329, 32lenltd 8089 . . . . . . . 8 (((𝜑 ∧ ∀𝑧𝐴 𝐵𝑧) ∧ 𝑑𝐴) → (𝐵𝑑 ↔ ¬ 𝑑 < 𝐵))
3433ralbidva 2483 . . . . . . 7 ((𝜑 ∧ ∀𝑧𝐴 𝐵𝑧) → (∀𝑑𝐴 𝐵𝑑 ↔ ∀𝑑𝐴 ¬ 𝑑 < 𝐵))
3528, 34mpbid 147 . . . . . 6 ((𝜑 ∧ ∀𝑧𝐴 𝐵𝑧) → ∀𝑑𝐴 ¬ 𝑑 < 𝐵)
36 breq1 4018 . . . . . . . 8 (𝑑 = 𝑧 → (𝑑 < 𝐵𝑧 < 𝐵))
3736notbid 668 . . . . . . 7 (𝑑 = 𝑧 → (¬ 𝑑 < 𝐵 ↔ ¬ 𝑧 < 𝐵))
3837cbvralv 2715 . . . . . 6 (∀𝑑𝐴 ¬ 𝑑 < 𝐵 ↔ ∀𝑧𝐴 ¬ 𝑧 < 𝐵)
3935, 38sylib 122 . . . . 5 ((𝜑 ∧ ∀𝑧𝐴 𝐵𝑧) → ∀𝑧𝐴 ¬ 𝑧 < 𝐵)
4022, 39jca 306 . . . 4 ((𝜑 ∧ ∀𝑧𝐴 𝐵𝑧) → (𝐵 ∈ ℝ ∧ ∀𝑧𝐴 ¬ 𝑧 < 𝐵))
414, 5infnlbti 7039 . . . 4 (𝜑 → ((𝐵 ∈ ℝ ∧ ∀𝑧𝐴 ¬ 𝑧 < 𝐵) → ¬ inf(𝐴, ℝ, < ) < 𝐵))
4224, 40, 41sylc 62 . . 3 ((𝜑 ∧ ∀𝑧𝐴 𝐵𝑧) → ¬ inf(𝐴, ℝ, < ) < 𝐵)
4322, 23, 42nltled 8092 . 2 ((𝜑 ∧ ∀𝑧𝐴 𝐵𝑧) → 𝐵 ≤ inf(𝐴, ℝ, < ))
4421, 43impbida 596 1 (𝜑 → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑧𝐴 𝐵𝑧))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wcel 2158  wral 2465  wrex 2466  wss 3141   class class class wbr 4015  infcinf 6996  cr 7824   < clt 8006  cle 8007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-apti 7940
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-xp 4644  df-cnv 4646  df-iota 5190  df-riota 5844  df-sup 6997  df-inf 6998  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012
This theorem is referenced by:  nninfdclemp1  12465
  Copyright terms: Public domain W3C validator