| Step | Hyp | Ref
| Expression |
| 1 | | infregelbex.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 2 | 1 | ad2antrr 488 |
. . . . 5
⊢ (((𝜑 ∧ 𝐵 ≤ inf(𝐴, ℝ, < )) ∧ 𝑎 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| 3 | | lttri3 8106 |
. . . . . . . 8
⊢ ((𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (𝑏 = 𝑐 ↔ (¬ 𝑏 < 𝑐 ∧ ¬ 𝑐 < 𝑏))) |
| 4 | 3 | adantl 277 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ)) → (𝑏 = 𝑐 ↔ (¬ 𝑏 < 𝑐 ∧ ¬ 𝑐 < 𝑏))) |
| 5 | | infregelbex.ex |
. . . . . . 7
⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
| 6 | 4, 5 | infclti 7089 |
. . . . . 6
⊢ (𝜑 → inf(𝐴, ℝ, < ) ∈
ℝ) |
| 7 | 6 | ad2antrr 488 |
. . . . 5
⊢ (((𝜑 ∧ 𝐵 ≤ inf(𝐴, ℝ, < )) ∧ 𝑎 ∈ 𝐴) → inf(𝐴, ℝ, < ) ∈
ℝ) |
| 8 | | infregelbex.ss |
. . . . . . 7
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 9 | 8 | sselda 3183 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ ℝ) |
| 10 | 9 | adantlr 477 |
. . . . 5
⊢ (((𝜑 ∧ 𝐵 ≤ inf(𝐴, ℝ, < )) ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ ℝ) |
| 11 | | simplr 528 |
. . . . 5
⊢ (((𝜑 ∧ 𝐵 ≤ inf(𝐴, ℝ, < )) ∧ 𝑎 ∈ 𝐴) → 𝐵 ≤ inf(𝐴, ℝ, < )) |
| 12 | 6 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → inf(𝐴, ℝ, < ) ∈
ℝ) |
| 13 | 4, 5 | inflbti 7090 |
. . . . . . . 8
⊢ (𝜑 → (𝑎 ∈ 𝐴 → ¬ 𝑎 < inf(𝐴, ℝ, < ))) |
| 14 | 13 | imp 124 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ¬ 𝑎 < inf(𝐴, ℝ, < )) |
| 15 | 12, 9, 14 | nltled 8147 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → inf(𝐴, ℝ, < ) ≤ 𝑎) |
| 16 | 15 | adantlr 477 |
. . . . 5
⊢ (((𝜑 ∧ 𝐵 ≤ inf(𝐴, ℝ, < )) ∧ 𝑎 ∈ 𝐴) → inf(𝐴, ℝ, < ) ≤ 𝑎) |
| 17 | 2, 7, 10, 11, 16 | letrd 8150 |
. . . 4
⊢ (((𝜑 ∧ 𝐵 ≤ inf(𝐴, ℝ, < )) ∧ 𝑎 ∈ 𝐴) → 𝐵 ≤ 𝑎) |
| 18 | 17 | ralrimiva 2570 |
. . 3
⊢ ((𝜑 ∧ 𝐵 ≤ inf(𝐴, ℝ, < )) → ∀𝑎 ∈ 𝐴 𝐵 ≤ 𝑎) |
| 19 | | breq2 4037 |
. . . 4
⊢ (𝑎 = 𝑧 → (𝐵 ≤ 𝑎 ↔ 𝐵 ≤ 𝑧)) |
| 20 | 19 | cbvralv 2729 |
. . 3
⊢
(∀𝑎 ∈
𝐴 𝐵 ≤ 𝑎 ↔ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) |
| 21 | 18, 20 | sylib 122 |
. 2
⊢ ((𝜑 ∧ 𝐵 ≤ inf(𝐴, ℝ, < )) → ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) |
| 22 | 1 | adantr 276 |
. . 3
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) → 𝐵 ∈ ℝ) |
| 23 | 6 | adantr 276 |
. . 3
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) → inf(𝐴, ℝ, < ) ∈
ℝ) |
| 24 | | simpl 109 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) → 𝜑) |
| 25 | | simpr 110 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) → ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) |
| 26 | | breq2 4037 |
. . . . . . . . 9
⊢ (𝑧 = 𝑑 → (𝐵 ≤ 𝑧 ↔ 𝐵 ≤ 𝑑)) |
| 27 | 26 | cbvralv 2729 |
. . . . . . . 8
⊢
(∀𝑧 ∈
𝐴 𝐵 ≤ 𝑧 ↔ ∀𝑑 ∈ 𝐴 𝐵 ≤ 𝑑) |
| 28 | 25, 27 | sylib 122 |
. . . . . . 7
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) → ∀𝑑 ∈ 𝐴 𝐵 ≤ 𝑑) |
| 29 | 1 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) ∧ 𝑑 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| 30 | 8 | ad2antrr 488 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) ∧ 𝑑 ∈ 𝐴) → 𝐴 ⊆ ℝ) |
| 31 | | simpr 110 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) ∧ 𝑑 ∈ 𝐴) → 𝑑 ∈ 𝐴) |
| 32 | 30, 31 | sseldd 3184 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) ∧ 𝑑 ∈ 𝐴) → 𝑑 ∈ ℝ) |
| 33 | 29, 32 | lenltd 8144 |
. . . . . . . 8
⊢ (((𝜑 ∧ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) ∧ 𝑑 ∈ 𝐴) → (𝐵 ≤ 𝑑 ↔ ¬ 𝑑 < 𝐵)) |
| 34 | 33 | ralbidva 2493 |
. . . . . . 7
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) → (∀𝑑 ∈ 𝐴 𝐵 ≤ 𝑑 ↔ ∀𝑑 ∈ 𝐴 ¬ 𝑑 < 𝐵)) |
| 35 | 28, 34 | mpbid 147 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) → ∀𝑑 ∈ 𝐴 ¬ 𝑑 < 𝐵) |
| 36 | | breq1 4036 |
. . . . . . . 8
⊢ (𝑑 = 𝑧 → (𝑑 < 𝐵 ↔ 𝑧 < 𝐵)) |
| 37 | 36 | notbid 668 |
. . . . . . 7
⊢ (𝑑 = 𝑧 → (¬ 𝑑 < 𝐵 ↔ ¬ 𝑧 < 𝐵)) |
| 38 | 37 | cbvralv 2729 |
. . . . . 6
⊢
(∀𝑑 ∈
𝐴 ¬ 𝑑 < 𝐵 ↔ ∀𝑧 ∈ 𝐴 ¬ 𝑧 < 𝐵) |
| 39 | 35, 38 | sylib 122 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) → ∀𝑧 ∈ 𝐴 ¬ 𝑧 < 𝐵) |
| 40 | 22, 39 | jca 306 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) → (𝐵 ∈ ℝ ∧ ∀𝑧 ∈ 𝐴 ¬ 𝑧 < 𝐵)) |
| 41 | 4, 5 | infnlbti 7092 |
. . . 4
⊢ (𝜑 → ((𝐵 ∈ ℝ ∧ ∀𝑧 ∈ 𝐴 ¬ 𝑧 < 𝐵) → ¬ inf(𝐴, ℝ, < ) < 𝐵)) |
| 42 | 24, 40, 41 | sylc 62 |
. . 3
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) → ¬ inf(𝐴, ℝ, < ) < 𝐵) |
| 43 | 22, 23, 42 | nltled 8147 |
. 2
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) → 𝐵 ≤ inf(𝐴, ℝ, < )) |
| 44 | 21, 43 | impbida 596 |
1
⊢ (𝜑 → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧)) |