ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infregelbex GIF version

Theorem infregelbex 9515
Description: Any lower bound of a set of real numbers with an infimum is less than or equal to the infimum. (Contributed by Jim Kingdon, 27-Sep-2024.)
Hypotheses
Ref Expression
infregelbex.ex (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
infregelbex.ss (𝜑𝐴 ⊆ ℝ)
infregelbex.b (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
infregelbex (𝜑 → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑧𝐴 𝐵𝑧))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧

Proof of Theorem infregelbex
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infregelbex.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
21ad2antrr 480 . . . . 5 (((𝜑𝐵 ≤ inf(𝐴, ℝ, < )) ∧ 𝑎𝐴) → 𝐵 ∈ ℝ)
3 lttri3 7960 . . . . . . . 8 ((𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (𝑏 = 𝑐 ↔ (¬ 𝑏 < 𝑐 ∧ ¬ 𝑐 < 𝑏)))
43adantl 275 . . . . . . 7 ((𝜑 ∧ (𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ)) → (𝑏 = 𝑐 ↔ (¬ 𝑏 < 𝑐 ∧ ¬ 𝑐 < 𝑏)))
5 infregelbex.ex . . . . . . 7 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
64, 5infclti 6970 . . . . . 6 (𝜑 → inf(𝐴, ℝ, < ) ∈ ℝ)
76ad2antrr 480 . . . . 5 (((𝜑𝐵 ≤ inf(𝐴, ℝ, < )) ∧ 𝑎𝐴) → inf(𝐴, ℝ, < ) ∈ ℝ)
8 infregelbex.ss . . . . . . 7 (𝜑𝐴 ⊆ ℝ)
98sselda 3128 . . . . . 6 ((𝜑𝑎𝐴) → 𝑎 ∈ ℝ)
109adantlr 469 . . . . 5 (((𝜑𝐵 ≤ inf(𝐴, ℝ, < )) ∧ 𝑎𝐴) → 𝑎 ∈ ℝ)
11 simplr 520 . . . . 5 (((𝜑𝐵 ≤ inf(𝐴, ℝ, < )) ∧ 𝑎𝐴) → 𝐵 ≤ inf(𝐴, ℝ, < ))
126adantr 274 . . . . . . 7 ((𝜑𝑎𝐴) → inf(𝐴, ℝ, < ) ∈ ℝ)
134, 5inflbti 6971 . . . . . . . 8 (𝜑 → (𝑎𝐴 → ¬ 𝑎 < inf(𝐴, ℝ, < )))
1413imp 123 . . . . . . 7 ((𝜑𝑎𝐴) → ¬ 𝑎 < inf(𝐴, ℝ, < ))
1512, 9, 14nltled 8001 . . . . . 6 ((𝜑𝑎𝐴) → inf(𝐴, ℝ, < ) ≤ 𝑎)
1615adantlr 469 . . . . 5 (((𝜑𝐵 ≤ inf(𝐴, ℝ, < )) ∧ 𝑎𝐴) → inf(𝐴, ℝ, < ) ≤ 𝑎)
172, 7, 10, 11, 16letrd 8004 . . . 4 (((𝜑𝐵 ≤ inf(𝐴, ℝ, < )) ∧ 𝑎𝐴) → 𝐵𝑎)
1817ralrimiva 2530 . . 3 ((𝜑𝐵 ≤ inf(𝐴, ℝ, < )) → ∀𝑎𝐴 𝐵𝑎)
19 breq2 3971 . . . 4 (𝑎 = 𝑧 → (𝐵𝑎𝐵𝑧))
2019cbvralv 2680 . . 3 (∀𝑎𝐴 𝐵𝑎 ↔ ∀𝑧𝐴 𝐵𝑧)
2118, 20sylib 121 . 2 ((𝜑𝐵 ≤ inf(𝐴, ℝ, < )) → ∀𝑧𝐴 𝐵𝑧)
221adantr 274 . . 3 ((𝜑 ∧ ∀𝑧𝐴 𝐵𝑧) → 𝐵 ∈ ℝ)
236adantr 274 . . 3 ((𝜑 ∧ ∀𝑧𝐴 𝐵𝑧) → inf(𝐴, ℝ, < ) ∈ ℝ)
24 simpl 108 . . . 4 ((𝜑 ∧ ∀𝑧𝐴 𝐵𝑧) → 𝜑)
25 simpr 109 . . . . . . . 8 ((𝜑 ∧ ∀𝑧𝐴 𝐵𝑧) → ∀𝑧𝐴 𝐵𝑧)
26 breq2 3971 . . . . . . . . 9 (𝑧 = 𝑑 → (𝐵𝑧𝐵𝑑))
2726cbvralv 2680 . . . . . . . 8 (∀𝑧𝐴 𝐵𝑧 ↔ ∀𝑑𝐴 𝐵𝑑)
2825, 27sylib 121 . . . . . . 7 ((𝜑 ∧ ∀𝑧𝐴 𝐵𝑧) → ∀𝑑𝐴 𝐵𝑑)
291ad2antrr 480 . . . . . . . . 9 (((𝜑 ∧ ∀𝑧𝐴 𝐵𝑧) ∧ 𝑑𝐴) → 𝐵 ∈ ℝ)
308ad2antrr 480 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑧𝐴 𝐵𝑧) ∧ 𝑑𝐴) → 𝐴 ⊆ ℝ)
31 simpr 109 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑧𝐴 𝐵𝑧) ∧ 𝑑𝐴) → 𝑑𝐴)
3230, 31sseldd 3129 . . . . . . . . 9 (((𝜑 ∧ ∀𝑧𝐴 𝐵𝑧) ∧ 𝑑𝐴) → 𝑑 ∈ ℝ)
3329, 32lenltd 7998 . . . . . . . 8 (((𝜑 ∧ ∀𝑧𝐴 𝐵𝑧) ∧ 𝑑𝐴) → (𝐵𝑑 ↔ ¬ 𝑑 < 𝐵))
3433ralbidva 2453 . . . . . . 7 ((𝜑 ∧ ∀𝑧𝐴 𝐵𝑧) → (∀𝑑𝐴 𝐵𝑑 ↔ ∀𝑑𝐴 ¬ 𝑑 < 𝐵))
3528, 34mpbid 146 . . . . . 6 ((𝜑 ∧ ∀𝑧𝐴 𝐵𝑧) → ∀𝑑𝐴 ¬ 𝑑 < 𝐵)
36 breq1 3970 . . . . . . . 8 (𝑑 = 𝑧 → (𝑑 < 𝐵𝑧 < 𝐵))
3736notbid 657 . . . . . . 7 (𝑑 = 𝑧 → (¬ 𝑑 < 𝐵 ↔ ¬ 𝑧 < 𝐵))
3837cbvralv 2680 . . . . . 6 (∀𝑑𝐴 ¬ 𝑑 < 𝐵 ↔ ∀𝑧𝐴 ¬ 𝑧 < 𝐵)
3935, 38sylib 121 . . . . 5 ((𝜑 ∧ ∀𝑧𝐴 𝐵𝑧) → ∀𝑧𝐴 ¬ 𝑧 < 𝐵)
4022, 39jca 304 . . . 4 ((𝜑 ∧ ∀𝑧𝐴 𝐵𝑧) → (𝐵 ∈ ℝ ∧ ∀𝑧𝐴 ¬ 𝑧 < 𝐵))
414, 5infnlbti 6973 . . . 4 (𝜑 → ((𝐵 ∈ ℝ ∧ ∀𝑧𝐴 ¬ 𝑧 < 𝐵) → ¬ inf(𝐴, ℝ, < ) < 𝐵))
4224, 40, 41sylc 62 . . 3 ((𝜑 ∧ ∀𝑧𝐴 𝐵𝑧) → ¬ inf(𝐴, ℝ, < ) < 𝐵)
4322, 23, 42nltled 8001 . 2 ((𝜑 ∧ ∀𝑧𝐴 𝐵𝑧) → 𝐵 ≤ inf(𝐴, ℝ, < ))
4421, 43impbida 586 1 (𝜑 → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑧𝐴 𝐵𝑧))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wcel 2128  wral 2435  wrex 2436  wss 3102   class class class wbr 3967  infcinf 6930  cr 7734   < clt 7915  cle 7916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4085  ax-pow 4138  ax-pr 4172  ax-un 4396  ax-setind 4499  ax-cnex 7826  ax-resscn 7827  ax-pre-ltirr 7847  ax-pre-ltwlin 7848  ax-pre-apti 7850
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-br 3968  df-opab 4029  df-xp 4595  df-cnv 4597  df-iota 5138  df-riota 5783  df-sup 6931  df-inf 6932  df-pnf 7917  df-mnf 7918  df-xr 7919  df-ltxr 7920  df-le 7921
This theorem is referenced by:  nninfdclemp1  12277
  Copyright terms: Public domain W3C validator