| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gtndiv | GIF version | ||
| Description: A larger number does not divide a smaller positive integer. (Contributed by NM, 3-May-2005.) |
| Ref | Expression |
|---|---|
| gtndiv | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → ¬ (𝐵 / 𝐴) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre 9025 | . . . 4 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ) | |
| 2 | 1 | 3ad2ant2 1021 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → 𝐵 ∈ ℝ) |
| 3 | simp1 999 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → 𝐴 ∈ ℝ) | |
| 4 | nngt0 9043 | . . . 4 ⊢ (𝐵 ∈ ℕ → 0 < 𝐵) | |
| 5 | 4 | 3ad2ant2 1021 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → 0 < 𝐵) |
| 6 | 4 | adantl 277 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵) |
| 7 | 0re 8054 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
| 8 | lttr 8128 | . . . . . . . 8 ⊢ ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 𝐵 ∧ 𝐵 < 𝐴) → 0 < 𝐴)) | |
| 9 | 7, 8 | mp3an1 1336 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 𝐵 ∧ 𝐵 < 𝐴) → 0 < 𝐴)) |
| 10 | 1, 9 | sylan 283 | . . . . . 6 ⊢ ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℝ) → ((0 < 𝐵 ∧ 𝐵 < 𝐴) → 0 < 𝐴)) |
| 11 | 10 | ancoms 268 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ) → ((0 < 𝐵 ∧ 𝐵 < 𝐴) → 0 < 𝐴)) |
| 12 | 6, 11 | mpand 429 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ) → (𝐵 < 𝐴 → 0 < 𝐴)) |
| 13 | 12 | 3impia 1202 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → 0 < 𝐴) |
| 14 | 2, 3, 5, 13 | divgt0d 8990 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → 0 < (𝐵 / 𝐴)) |
| 15 | simp3 1001 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → 𝐵 < 𝐴) | |
| 16 | 1re 8053 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 17 | ltdivmul2 8933 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((𝐵 / 𝐴) < 1 ↔ 𝐵 < (1 · 𝐴))) | |
| 18 | 16, 17 | mp3an2 1337 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((𝐵 / 𝐴) < 1 ↔ 𝐵 < (1 · 𝐴))) |
| 19 | 2, 3, 13, 18 | syl12anc 1247 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → ((𝐵 / 𝐴) < 1 ↔ 𝐵 < (1 · 𝐴))) |
| 20 | recn 8040 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 21 | 20 | mulid2d 8073 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (1 · 𝐴) = 𝐴) |
| 22 | 21 | breq2d 4055 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐵 < (1 · 𝐴) ↔ 𝐵 < 𝐴)) |
| 23 | 22 | 3ad2ant1 1020 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → (𝐵 < (1 · 𝐴) ↔ 𝐵 < 𝐴)) |
| 24 | 19, 23 | bitrd 188 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → ((𝐵 / 𝐴) < 1 ↔ 𝐵 < 𝐴)) |
| 25 | 15, 24 | mpbird 167 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → (𝐵 / 𝐴) < 1) |
| 26 | 0p1e1 9132 | . . 3 ⊢ (0 + 1) = 1 | |
| 27 | 25, 26 | breqtrrdi 4085 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → (𝐵 / 𝐴) < (0 + 1)) |
| 28 | 0z 9365 | . . 3 ⊢ 0 ∈ ℤ | |
| 29 | btwnnz 9449 | . . 3 ⊢ ((0 ∈ ℤ ∧ 0 < (𝐵 / 𝐴) ∧ (𝐵 / 𝐴) < (0 + 1)) → ¬ (𝐵 / 𝐴) ∈ ℤ) | |
| 30 | 28, 29 | mp3an1 1336 | . 2 ⊢ ((0 < (𝐵 / 𝐴) ∧ (𝐵 / 𝐴) < (0 + 1)) → ¬ (𝐵 / 𝐴) ∈ ℤ) |
| 31 | 14, 27, 30 | syl2anc 411 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → ¬ (𝐵 / 𝐴) ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 ∈ wcel 2175 class class class wbr 4043 (class class class)co 5934 ℝcr 7906 0cc0 7907 1c1 7908 + caddc 7910 · cmul 7912 < clt 8089 / cdiv 8727 ℕcn 9018 ℤcz 9354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulrcl 8006 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-precex 8017 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-apti 8022 ax-pre-ltadd 8023 ax-pre-mulgt0 8024 ax-pre-mulext 8025 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-id 4338 df-po 4341 df-iso 4342 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-iota 5229 df-fun 5270 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-reap 8630 df-ap 8637 df-div 8728 df-inn 9019 df-n0 9278 df-z 9355 |
| This theorem is referenced by: prime 9454 |
| Copyright terms: Public domain | W3C validator |