| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gtndiv | GIF version | ||
| Description: A larger number does not divide a smaller positive integer. (Contributed by NM, 3-May-2005.) |
| Ref | Expression |
|---|---|
| gtndiv | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → ¬ (𝐵 / 𝐴) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre 9014 | . . . 4 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ) | |
| 2 | 1 | 3ad2ant2 1021 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → 𝐵 ∈ ℝ) |
| 3 | simp1 999 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → 𝐴 ∈ ℝ) | |
| 4 | nngt0 9032 | . . . 4 ⊢ (𝐵 ∈ ℕ → 0 < 𝐵) | |
| 5 | 4 | 3ad2ant2 1021 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → 0 < 𝐵) |
| 6 | 4 | adantl 277 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵) |
| 7 | 0re 8043 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
| 8 | lttr 8117 | . . . . . . . 8 ⊢ ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 𝐵 ∧ 𝐵 < 𝐴) → 0 < 𝐴)) | |
| 9 | 7, 8 | mp3an1 1335 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 𝐵 ∧ 𝐵 < 𝐴) → 0 < 𝐴)) |
| 10 | 1, 9 | sylan 283 | . . . . . 6 ⊢ ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℝ) → ((0 < 𝐵 ∧ 𝐵 < 𝐴) → 0 < 𝐴)) |
| 11 | 10 | ancoms 268 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ) → ((0 < 𝐵 ∧ 𝐵 < 𝐴) → 0 < 𝐴)) |
| 12 | 6, 11 | mpand 429 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ) → (𝐵 < 𝐴 → 0 < 𝐴)) |
| 13 | 12 | 3impia 1202 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → 0 < 𝐴) |
| 14 | 2, 3, 5, 13 | divgt0d 8979 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → 0 < (𝐵 / 𝐴)) |
| 15 | simp3 1001 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → 𝐵 < 𝐴) | |
| 16 | 1re 8042 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 17 | ltdivmul2 8922 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((𝐵 / 𝐴) < 1 ↔ 𝐵 < (1 · 𝐴))) | |
| 18 | 16, 17 | mp3an2 1336 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((𝐵 / 𝐴) < 1 ↔ 𝐵 < (1 · 𝐴))) |
| 19 | 2, 3, 13, 18 | syl12anc 1247 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → ((𝐵 / 𝐴) < 1 ↔ 𝐵 < (1 · 𝐴))) |
| 20 | recn 8029 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 21 | 20 | mulid2d 8062 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (1 · 𝐴) = 𝐴) |
| 22 | 21 | breq2d 4046 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐵 < (1 · 𝐴) ↔ 𝐵 < 𝐴)) |
| 23 | 22 | 3ad2ant1 1020 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → (𝐵 < (1 · 𝐴) ↔ 𝐵 < 𝐴)) |
| 24 | 19, 23 | bitrd 188 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → ((𝐵 / 𝐴) < 1 ↔ 𝐵 < 𝐴)) |
| 25 | 15, 24 | mpbird 167 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → (𝐵 / 𝐴) < 1) |
| 26 | 0p1e1 9121 | . . 3 ⊢ (0 + 1) = 1 | |
| 27 | 25, 26 | breqtrrdi 4076 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → (𝐵 / 𝐴) < (0 + 1)) |
| 28 | 0z 9354 | . . 3 ⊢ 0 ∈ ℤ | |
| 29 | btwnnz 9437 | . . 3 ⊢ ((0 ∈ ℤ ∧ 0 < (𝐵 / 𝐴) ∧ (𝐵 / 𝐴) < (0 + 1)) → ¬ (𝐵 / 𝐴) ∈ ℤ) | |
| 30 | 28, 29 | mp3an1 1335 | . 2 ⊢ ((0 < (𝐵 / 𝐴) ∧ (𝐵 / 𝐴) < (0 + 1)) → ¬ (𝐵 / 𝐴) ∈ ℤ) |
| 31 | 14, 27, 30 | syl2anc 411 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → ¬ (𝐵 / 𝐴) ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 ∈ wcel 2167 class class class wbr 4034 (class class class)co 5925 ℝcr 7895 0cc0 7896 1c1 7897 + caddc 7899 · cmul 7901 < clt 8078 / cdiv 8716 ℕcn 9007 ℤcz 9343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-n0 9267 df-z 9344 |
| This theorem is referenced by: prime 9442 |
| Copyright terms: Public domain | W3C validator |