ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gtndiv GIF version

Theorem gtndiv 9538
Description: A larger number does not divide a smaller positive integer. (Contributed by NM, 3-May-2005.)
Assertion
Ref Expression
gtndiv ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → ¬ (𝐵 / 𝐴) ∈ ℤ)

Proof of Theorem gtndiv
StepHypRef Expression
1 nnre 9113 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
213ad2ant2 1043 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → 𝐵 ∈ ℝ)
3 simp1 1021 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → 𝐴 ∈ ℝ)
4 nngt0 9131 . . . 4 (𝐵 ∈ ℕ → 0 < 𝐵)
543ad2ant2 1043 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → 0 < 𝐵)
64adantl 277 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵)
7 0re 8142 . . . . . . . 8 0 ∈ ℝ
8 lttr 8216 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 𝐵𝐵 < 𝐴) → 0 < 𝐴))
97, 8mp3an1 1358 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 𝐵𝐵 < 𝐴) → 0 < 𝐴))
101, 9sylan 283 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℝ) → ((0 < 𝐵𝐵 < 𝐴) → 0 < 𝐴))
1110ancoms 268 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ) → ((0 < 𝐵𝐵 < 𝐴) → 0 < 𝐴))
126, 11mpand 429 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ) → (𝐵 < 𝐴 → 0 < 𝐴))
13123impia 1224 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → 0 < 𝐴)
142, 3, 5, 13divgt0d 9078 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → 0 < (𝐵 / 𝐴))
15 simp3 1023 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → 𝐵 < 𝐴)
16 1re 8141 . . . . . . 7 1 ∈ ℝ
17 ltdivmul2 9021 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((𝐵 / 𝐴) < 1 ↔ 𝐵 < (1 · 𝐴)))
1816, 17mp3an2 1359 . . . . . 6 ((𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((𝐵 / 𝐴) < 1 ↔ 𝐵 < (1 · 𝐴)))
192, 3, 13, 18syl12anc 1269 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → ((𝐵 / 𝐴) < 1 ↔ 𝐵 < (1 · 𝐴)))
20 recn 8128 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2120mulid2d 8161 . . . . . . 7 (𝐴 ∈ ℝ → (1 · 𝐴) = 𝐴)
2221breq2d 4094 . . . . . 6 (𝐴 ∈ ℝ → (𝐵 < (1 · 𝐴) ↔ 𝐵 < 𝐴))
23223ad2ant1 1042 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → (𝐵 < (1 · 𝐴) ↔ 𝐵 < 𝐴))
2419, 23bitrd 188 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → ((𝐵 / 𝐴) < 1 ↔ 𝐵 < 𝐴))
2515, 24mpbird 167 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → (𝐵 / 𝐴) < 1)
26 0p1e1 9220 . . 3 (0 + 1) = 1
2725, 26breqtrrdi 4124 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → (𝐵 / 𝐴) < (0 + 1))
28 0z 9453 . . 3 0 ∈ ℤ
29 btwnnz 9537 . . 3 ((0 ∈ ℤ ∧ 0 < (𝐵 / 𝐴) ∧ (𝐵 / 𝐴) < (0 + 1)) → ¬ (𝐵 / 𝐴) ∈ ℤ)
3028, 29mp3an1 1358 . 2 ((0 < (𝐵 / 𝐴) ∧ (𝐵 / 𝐴) < (0 + 1)) → ¬ (𝐵 / 𝐴) ∈ ℤ)
3114, 27, 30syl2anc 411 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → ¬ (𝐵 / 𝐴) ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 1002  wcel 2200   class class class wbr 4082  (class class class)co 6000  cr 7994  0cc0 7995  1c1 7996   + caddc 7998   · cmul 8000   < clt 8177   / cdiv 8815  cn 9106  cz 9442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-id 4383  df-po 4386  df-iso 4387  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-n0 9366  df-z 9443
This theorem is referenced by:  prime  9542
  Copyright terms: Public domain W3C validator