Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cn1lem | GIF version |
Description: A sufficient condition for a function to be continuous. (Contributed by Mario Carneiro, 9-Feb-2014.) |
Ref | Expression |
---|---|
cn1lem.1 | ⊢ 𝐹:ℂ⟶ℂ |
cn1lem.2 | ⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) ≤ (abs‘(𝑧 − 𝐴))) |
Ref | Expression |
---|---|
cn1lem | ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+) | |
2 | simpr 109 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ) | |
3 | simpll 519 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → 𝐴 ∈ ℂ) | |
4 | cn1lem.2 | . . . . 5 ⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) ≤ (abs‘(𝑧 − 𝐴))) | |
5 | 2, 3, 4 | syl2anc 409 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) ≤ (abs‘(𝑧 − 𝐴))) |
6 | cn1lem.1 | . . . . . . . . 9 ⊢ 𝐹:ℂ⟶ℂ | |
7 | 6 | ffvelrni 5619 | . . . . . . . 8 ⊢ (𝑧 ∈ ℂ → (𝐹‘𝑧) ∈ ℂ) |
8 | 2, 7 | syl 14 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (𝐹‘𝑧) ∈ ℂ) |
9 | 6 | ffvelrni 5619 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (𝐹‘𝐴) ∈ ℂ) |
10 | 3, 9 | syl 14 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (𝐹‘𝐴) ∈ ℂ) |
11 | 8, 10 | subcld 8209 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → ((𝐹‘𝑧) − (𝐹‘𝐴)) ∈ ℂ) |
12 | 11 | abscld 11123 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) ∈ ℝ) |
13 | 2, 3 | subcld 8209 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (𝑧 − 𝐴) ∈ ℂ) |
14 | 13 | abscld 11123 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (abs‘(𝑧 − 𝐴)) ∈ ℝ) |
15 | rpre 9596 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ) | |
16 | 15 | ad2antlr 481 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → 𝑥 ∈ ℝ) |
17 | lelttr 7987 | . . . . 5 ⊢ (((abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) ∈ ℝ ∧ (abs‘(𝑧 − 𝐴)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) ≤ (abs‘(𝑧 − 𝐴)) ∧ (abs‘(𝑧 − 𝐴)) < 𝑥) → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥)) | |
18 | 12, 14, 16, 17 | syl3anc 1228 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (((abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) ≤ (abs‘(𝑧 − 𝐴)) ∧ (abs‘(𝑧 − 𝐴)) < 𝑥) → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥)) |
19 | 5, 18 | mpand 426 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → ((abs‘(𝑧 − 𝐴)) < 𝑥 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥)) |
20 | 19 | ralrimiva 2539 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑥 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥)) |
21 | breq2 3986 | . . . . 5 ⊢ (𝑦 = 𝑥 → ((abs‘(𝑧 − 𝐴)) < 𝑦 ↔ (abs‘(𝑧 − 𝐴)) < 𝑥)) | |
22 | 21 | imbi1d 230 | . . . 4 ⊢ (𝑦 = 𝑥 → (((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥) ↔ ((abs‘(𝑧 − 𝐴)) < 𝑥 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥))) |
23 | 22 | ralbidv 2466 | . . 3 ⊢ (𝑦 = 𝑥 → (∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥) ↔ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑥 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥))) |
24 | 23 | rspcev 2830 | . 2 ⊢ ((𝑥 ∈ ℝ+ ∧ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑥 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥)) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥)) |
25 | 1, 20, 24 | syl2anc 409 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 ∀wral 2444 ∃wrex 2445 class class class wbr 3982 ⟶wf 5184 ‘cfv 5188 (class class class)co 5842 ℂcc 7751 ℝcr 7752 < clt 7933 ≤ cle 7934 − cmin 8069 ℝ+crp 9589 abscabs 10939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-rp 9590 df-seqfrec 10381 df-exp 10455 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 |
This theorem is referenced by: abscn2 11256 cjcn2 11257 recn2 11258 imcn2 11259 |
Copyright terms: Public domain | W3C validator |