ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cn1lem GIF version

Theorem cn1lem 11625
Description: A sufficient condition for a function to be continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
Hypotheses
Ref Expression
cn1lem.1 𝐹:ℂ⟶ℂ
cn1lem.2 ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘((𝐹𝑧) − (𝐹𝐴))) ≤ (abs‘(𝑧𝐴)))
Assertion
Ref Expression
cn1lem ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥))
Distinct variable groups:   𝑥,𝑦,𝑧   𝑦,𝐴,𝑧   𝑦,𝐹
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥,𝑧)

Proof of Theorem cn1lem
StepHypRef Expression
1 simpr 110 . 2 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
2 simpr 110 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
3 simpll 527 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → 𝐴 ∈ ℂ)
4 cn1lem.2 . . . . 5 ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘((𝐹𝑧) − (𝐹𝐴))) ≤ (abs‘(𝑧𝐴)))
52, 3, 4syl2anc 411 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (abs‘((𝐹𝑧) − (𝐹𝐴))) ≤ (abs‘(𝑧𝐴)))
6 cn1lem.1 . . . . . . . . 9 𝐹:ℂ⟶ℂ
76ffvelcdmi 5714 . . . . . . . 8 (𝑧 ∈ ℂ → (𝐹𝑧) ∈ ℂ)
82, 7syl 14 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (𝐹𝑧) ∈ ℂ)
96ffvelcdmi 5714 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐹𝐴) ∈ ℂ)
103, 9syl 14 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (𝐹𝐴) ∈ ℂ)
118, 10subcld 8383 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → ((𝐹𝑧) − (𝐹𝐴)) ∈ ℂ)
1211abscld 11492 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (abs‘((𝐹𝑧) − (𝐹𝐴))) ∈ ℝ)
132, 3subcld 8383 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (𝑧𝐴) ∈ ℂ)
1413abscld 11492 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (abs‘(𝑧𝐴)) ∈ ℝ)
15 rpre 9782 . . . . . 6 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
1615ad2antlr 489 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → 𝑥 ∈ ℝ)
17 lelttr 8161 . . . . 5 (((abs‘((𝐹𝑧) − (𝐹𝐴))) ∈ ℝ ∧ (abs‘(𝑧𝐴)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((abs‘((𝐹𝑧) − (𝐹𝐴))) ≤ (abs‘(𝑧𝐴)) ∧ (abs‘(𝑧𝐴)) < 𝑥) → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥))
1812, 14, 16, 17syl3anc 1250 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (((abs‘((𝐹𝑧) − (𝐹𝐴))) ≤ (abs‘(𝑧𝐴)) ∧ (abs‘(𝑧𝐴)) < 𝑥) → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥))
195, 18mpand 429 . . 3 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → ((abs‘(𝑧𝐴)) < 𝑥 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥))
2019ralrimiva 2579 . 2 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∀𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑥 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥))
21 breq2 4048 . . . . 5 (𝑦 = 𝑥 → ((abs‘(𝑧𝐴)) < 𝑦 ↔ (abs‘(𝑧𝐴)) < 𝑥))
2221imbi1d 231 . . . 4 (𝑦 = 𝑥 → (((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥) ↔ ((abs‘(𝑧𝐴)) < 𝑥 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)))
2322ralbidv 2506 . . 3 (𝑦 = 𝑥 → (∀𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥) ↔ ∀𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑥 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)))
2423rspcev 2877 . 2 ((𝑥 ∈ ℝ+ ∧ ∀𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑥 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥))
251, 20, 24syl2anc 411 1 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2176  wral 2484  wrex 2485   class class class wbr 4044  wf 5267  cfv 5271  (class class class)co 5944  cc 7923  cr 7924   < clt 8107  cle 8108  cmin 8243  +crp 9775  abscabs 11308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-rp 9776  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310
This theorem is referenced by:  abscn2  11626  cjcn2  11627  recn2  11628  imcn2  11629
  Copyright terms: Public domain W3C validator