![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cn1lem | GIF version |
Description: A sufficient condition for a function to be continuous. (Contributed by Mario Carneiro, 9-Feb-2014.) |
Ref | Expression |
---|---|
cn1lem.1 | ⊢ 𝐹:ℂ⟶ℂ |
cn1lem.2 | ⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) ≤ (abs‘(𝑧 − 𝐴))) |
Ref | Expression |
---|---|
cn1lem | ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+) | |
2 | simpr 110 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ) | |
3 | simpll 527 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → 𝐴 ∈ ℂ) | |
4 | cn1lem.2 | . . . . 5 ⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) ≤ (abs‘(𝑧 − 𝐴))) | |
5 | 2, 3, 4 | syl2anc 411 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) ≤ (abs‘(𝑧 − 𝐴))) |
6 | cn1lem.1 | . . . . . . . . 9 ⊢ 𝐹:ℂ⟶ℂ | |
7 | 6 | ffvelcdmi 5693 | . . . . . . . 8 ⊢ (𝑧 ∈ ℂ → (𝐹‘𝑧) ∈ ℂ) |
8 | 2, 7 | syl 14 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (𝐹‘𝑧) ∈ ℂ) |
9 | 6 | ffvelcdmi 5693 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (𝐹‘𝐴) ∈ ℂ) |
10 | 3, 9 | syl 14 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (𝐹‘𝐴) ∈ ℂ) |
11 | 8, 10 | subcld 8332 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → ((𝐹‘𝑧) − (𝐹‘𝐴)) ∈ ℂ) |
12 | 11 | abscld 11328 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) ∈ ℝ) |
13 | 2, 3 | subcld 8332 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (𝑧 − 𝐴) ∈ ℂ) |
14 | 13 | abscld 11328 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (abs‘(𝑧 − 𝐴)) ∈ ℝ) |
15 | rpre 9729 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ) | |
16 | 15 | ad2antlr 489 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → 𝑥 ∈ ℝ) |
17 | lelttr 8110 | . . . . 5 ⊢ (((abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) ∈ ℝ ∧ (abs‘(𝑧 − 𝐴)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) ≤ (abs‘(𝑧 − 𝐴)) ∧ (abs‘(𝑧 − 𝐴)) < 𝑥) → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥)) | |
18 | 12, 14, 16, 17 | syl3anc 1249 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (((abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) ≤ (abs‘(𝑧 − 𝐴)) ∧ (abs‘(𝑧 − 𝐴)) < 𝑥) → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥)) |
19 | 5, 18 | mpand 429 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → ((abs‘(𝑧 − 𝐴)) < 𝑥 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥)) |
20 | 19 | ralrimiva 2567 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑥 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥)) |
21 | breq2 4034 | . . . . 5 ⊢ (𝑦 = 𝑥 → ((abs‘(𝑧 − 𝐴)) < 𝑦 ↔ (abs‘(𝑧 − 𝐴)) < 𝑥)) | |
22 | 21 | imbi1d 231 | . . . 4 ⊢ (𝑦 = 𝑥 → (((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥) ↔ ((abs‘(𝑧 − 𝐴)) < 𝑥 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥))) |
23 | 22 | ralbidv 2494 | . . 3 ⊢ (𝑦 = 𝑥 → (∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥) ↔ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑥 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥))) |
24 | 23 | rspcev 2865 | . 2 ⊢ ((𝑥 ∈ ℝ+ ∧ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑥 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥)) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥)) |
25 | 1, 20, 24 | syl2anc 411 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 ∀wral 2472 ∃wrex 2473 class class class wbr 4030 ⟶wf 5251 ‘cfv 5255 (class class class)co 5919 ℂcc 7872 ℝcr 7873 < clt 8056 ≤ cle 8057 − cmin 8192 ℝ+crp 9722 abscabs 11144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-frec 6446 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-n0 9244 df-z 9321 df-uz 9596 df-rp 9723 df-seqfrec 10522 df-exp 10613 df-cj 10989 df-re 10990 df-im 10991 df-rsqrt 11145 df-abs 11146 |
This theorem is referenced by: abscn2 11461 cjcn2 11462 recn2 11463 imcn2 11464 |
Copyright terms: Public domain | W3C validator |