| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > xblm | GIF version | ||
| Description: A ball is inhabited iff the radius is positive. (Contributed by Mario Carneiro, 23-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| xblm | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (∃𝑥 𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ 0 < 𝑅)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elbl 14627 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))) | |
| 2 | xmetge0 14601 | . . . . . . . 8 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → 0 ≤ (𝑃𝐷𝑥)) | |
| 3 | 2 | 3expa 1205 | . . . . . . 7 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → 0 ≤ (𝑃𝐷𝑥)) | 
| 4 | 3 | 3adantl3 1157 | . . . . . 6 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ 𝑥 ∈ 𝑋) → 0 ≤ (𝑃𝐷𝑥)) | 
| 5 | 0xr 8073 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
| 6 | xmetcl 14588 | . . . . . . . . 9 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑃𝐷𝑥) ∈ ℝ*) | |
| 7 | 6 | 3expa 1205 | . . . . . . . 8 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → (𝑃𝐷𝑥) ∈ ℝ*) | 
| 8 | 7 | 3adantl3 1157 | . . . . . . 7 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ 𝑥 ∈ 𝑋) → (𝑃𝐷𝑥) ∈ ℝ*) | 
| 9 | simpl3 1004 | . . . . . . 7 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ 𝑥 ∈ 𝑋) → 𝑅 ∈ ℝ*) | |
| 10 | xrlelttr 9881 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ* ∧ 𝑅 ∈ ℝ*) → ((0 ≤ (𝑃𝐷𝑥) ∧ (𝑃𝐷𝑥) < 𝑅) → 0 < 𝑅)) | |
| 11 | 5, 8, 9, 10 | mp3an2i 1353 | . . . . . 6 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ 𝑥 ∈ 𝑋) → ((0 ≤ (𝑃𝐷𝑥) ∧ (𝑃𝐷𝑥) < 𝑅) → 0 < 𝑅)) | 
| 12 | 4, 11 | mpand 429 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ 𝑥 ∈ 𝑋) → ((𝑃𝐷𝑥) < 𝑅 → 0 < 𝑅)) | 
| 13 | 12 | expimpd 363 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → ((𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) → 0 < 𝑅)) | 
| 14 | 1, 13 | sylbid 150 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) → 0 < 𝑅)) | 
| 15 | 14 | exlimdv 1833 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (∃𝑥 𝑥 ∈ (𝑃(ball‘𝐷)𝑅) → 0 < 𝑅)) | 
| 16 | simpl2 1003 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ 0 < 𝑅) → 𝑃 ∈ 𝑋) | |
| 17 | simpl1 1002 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ 0 < 𝑅) → 𝐷 ∈ (∞Met‘𝑋)) | |
| 18 | simpl3 1004 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ 0 < 𝑅) → 𝑅 ∈ ℝ*) | |
| 19 | simpr 110 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ 0 < 𝑅) → 0 < 𝑅) | |
| 20 | xblcntr 14650 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅)) | |
| 21 | 17, 16, 18, 19, 20 | syl112anc 1253 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ 0 < 𝑅) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅)) | 
| 22 | eleq1 2259 | . . . . 5 ⊢ (𝑥 = 𝑃 → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ 𝑃 ∈ (𝑃(ball‘𝐷)𝑅))) | |
| 23 | 22 | spcegv 2852 | . . . 4 ⊢ (𝑃 ∈ 𝑋 → (𝑃 ∈ (𝑃(ball‘𝐷)𝑅) → ∃𝑥 𝑥 ∈ (𝑃(ball‘𝐷)𝑅))) | 
| 24 | 16, 21, 23 | sylc 62 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ 0 < 𝑅) → ∃𝑥 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) | 
| 25 | 24 | ex 115 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (0 < 𝑅 → ∃𝑥 𝑥 ∈ (𝑃(ball‘𝐷)𝑅))) | 
| 26 | 15, 25 | impbid 129 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (∃𝑥 𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ 0 < 𝑅)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 ∃wex 1506 ∈ wcel 2167 class class class wbr 4033 ‘cfv 5258 (class class class)co 5922 0cc0 7879 ℝ*cxr 8060 < clt 8061 ≤ cle 8062 ∞Metcxmet 14092 ballcbl 14094 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-map 6709 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-2 9049 df-xadd 9848 df-psmet 14099 df-xmet 14100 df-bl 14102 | 
| This theorem is referenced by: blssioo 14789 | 
| Copyright terms: Public domain | W3C validator |