ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xblm GIF version

Theorem xblm 13057
Description: A ball is inhabited iff the radius is positive. (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
xblm ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (∃𝑥 𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ 0 < 𝑅))
Distinct variable groups:   𝑥,𝐷   𝑥,𝑅   𝑥,𝑃   𝑥,𝑋

Proof of Theorem xblm
StepHypRef Expression
1 elbl 13031 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
2 xmetge0 13005 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑥𝑋) → 0 ≤ (𝑃𝐷𝑥))
323expa 1193 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑥𝑋) → 0 ≤ (𝑃𝐷𝑥))
433adantl3 1145 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑥𝑋) → 0 ≤ (𝑃𝐷𝑥))
5 0xr 7945 . . . . . . 7 0 ∈ ℝ*
6 xmetcl 12992 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑥𝑋) → (𝑃𝐷𝑥) ∈ ℝ*)
763expa 1193 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑥𝑋) → (𝑃𝐷𝑥) ∈ ℝ*)
873adantl3 1145 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑥𝑋) → (𝑃𝐷𝑥) ∈ ℝ*)
9 simpl3 992 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑥𝑋) → 𝑅 ∈ ℝ*)
10 xrlelttr 9742 . . . . . . 7 ((0 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ*𝑅 ∈ ℝ*) → ((0 ≤ (𝑃𝐷𝑥) ∧ (𝑃𝐷𝑥) < 𝑅) → 0 < 𝑅))
115, 8, 9, 10mp3an2i 1332 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑥𝑋) → ((0 ≤ (𝑃𝐷𝑥) ∧ (𝑃𝐷𝑥) < 𝑅) → 0 < 𝑅))
124, 11mpand 426 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑥𝑋) → ((𝑃𝐷𝑥) < 𝑅 → 0 < 𝑅))
1312expimpd 361 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) → 0 < 𝑅))
141, 13sylbid 149 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) → 0 < 𝑅))
1514exlimdv 1807 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (∃𝑥 𝑥 ∈ (𝑃(ball‘𝐷)𝑅) → 0 < 𝑅))
16 simpl2 991 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 0 < 𝑅) → 𝑃𝑋)
17 simpl1 990 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 0 < 𝑅) → 𝐷 ∈ (∞Met‘𝑋))
18 simpl3 992 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 0 < 𝑅) → 𝑅 ∈ ℝ*)
19 simpr 109 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 0 < 𝑅) → 0 < 𝑅)
20 xblcntr 13054 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅))
2117, 16, 18, 19, 20syl112anc 1232 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 0 < 𝑅) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅))
22 eleq1 2229 . . . . 5 (𝑥 = 𝑃 → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ 𝑃 ∈ (𝑃(ball‘𝐷)𝑅)))
2322spcegv 2814 . . . 4 (𝑃𝑋 → (𝑃 ∈ (𝑃(ball‘𝐷)𝑅) → ∃𝑥 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)))
2416, 21, 23sylc 62 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 0 < 𝑅) → ∃𝑥 𝑥 ∈ (𝑃(ball‘𝐷)𝑅))
2524ex 114 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (0 < 𝑅 → ∃𝑥 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)))
2615, 25impbid 128 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (∃𝑥 𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ 0 < 𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968  wex 1480  wcel 2136   class class class wbr 3982  cfv 5188  (class class class)co 5842  0cc0 7753  *cxr 7932   < clt 7933  cle 7934  ∞Metcxmet 12620  ballcbl 12622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869  ax-pre-mulgt0 7870
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-2 8916  df-xadd 9709  df-psmet 12627  df-xmet 12628  df-bl 12630
This theorem is referenced by:  blssioo  13185
  Copyright terms: Public domain W3C validator