Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xblm | GIF version |
Description: A ball is inhabited iff the radius is positive. (Contributed by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
xblm | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (∃𝑥 𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ 0 < 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elbl 13185 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))) | |
2 | xmetge0 13159 | . . . . . . . 8 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → 0 ≤ (𝑃𝐷𝑥)) | |
3 | 2 | 3expa 1198 | . . . . . . 7 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → 0 ≤ (𝑃𝐷𝑥)) |
4 | 3 | 3adantl3 1150 | . . . . . 6 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ 𝑥 ∈ 𝑋) → 0 ≤ (𝑃𝐷𝑥)) |
5 | 0xr 7966 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
6 | xmetcl 13146 | . . . . . . . . 9 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑃𝐷𝑥) ∈ ℝ*) | |
7 | 6 | 3expa 1198 | . . . . . . . 8 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → (𝑃𝐷𝑥) ∈ ℝ*) |
8 | 7 | 3adantl3 1150 | . . . . . . 7 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ 𝑥 ∈ 𝑋) → (𝑃𝐷𝑥) ∈ ℝ*) |
9 | simpl3 997 | . . . . . . 7 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ 𝑥 ∈ 𝑋) → 𝑅 ∈ ℝ*) | |
10 | xrlelttr 9763 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ* ∧ 𝑅 ∈ ℝ*) → ((0 ≤ (𝑃𝐷𝑥) ∧ (𝑃𝐷𝑥) < 𝑅) → 0 < 𝑅)) | |
11 | 5, 8, 9, 10 | mp3an2i 1337 | . . . . . 6 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ 𝑥 ∈ 𝑋) → ((0 ≤ (𝑃𝐷𝑥) ∧ (𝑃𝐷𝑥) < 𝑅) → 0 < 𝑅)) |
12 | 4, 11 | mpand 427 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ 𝑥 ∈ 𝑋) → ((𝑃𝐷𝑥) < 𝑅 → 0 < 𝑅)) |
13 | 12 | expimpd 361 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → ((𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) → 0 < 𝑅)) |
14 | 1, 13 | sylbid 149 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) → 0 < 𝑅)) |
15 | 14 | exlimdv 1812 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (∃𝑥 𝑥 ∈ (𝑃(ball‘𝐷)𝑅) → 0 < 𝑅)) |
16 | simpl2 996 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ 0 < 𝑅) → 𝑃 ∈ 𝑋) | |
17 | simpl1 995 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ 0 < 𝑅) → 𝐷 ∈ (∞Met‘𝑋)) | |
18 | simpl3 997 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ 0 < 𝑅) → 𝑅 ∈ ℝ*) | |
19 | simpr 109 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ 0 < 𝑅) → 0 < 𝑅) | |
20 | xblcntr 13208 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅)) | |
21 | 17, 16, 18, 19, 20 | syl112anc 1237 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ 0 < 𝑅) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅)) |
22 | eleq1 2233 | . . . . 5 ⊢ (𝑥 = 𝑃 → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ 𝑃 ∈ (𝑃(ball‘𝐷)𝑅))) | |
23 | 22 | spcegv 2818 | . . . 4 ⊢ (𝑃 ∈ 𝑋 → (𝑃 ∈ (𝑃(ball‘𝐷)𝑅) → ∃𝑥 𝑥 ∈ (𝑃(ball‘𝐷)𝑅))) |
24 | 16, 21, 23 | sylc 62 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ 0 < 𝑅) → ∃𝑥 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) |
25 | 24 | ex 114 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (0 < 𝑅 → ∃𝑥 𝑥 ∈ (𝑃(ball‘𝐷)𝑅))) |
26 | 15, 25 | impbid 128 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (∃𝑥 𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ 0 < 𝑅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 973 ∃wex 1485 ∈ wcel 2141 class class class wbr 3989 ‘cfv 5198 (class class class)co 5853 0cc0 7774 ℝ*cxr 7953 < clt 7954 ≤ cle 7955 ∞Metcxmet 12774 ballcbl 12776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-map 6628 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-2 8937 df-xadd 9730 df-psmet 12781 df-xmet 12782 df-bl 12784 |
This theorem is referenced by: blssioo 13339 |
Copyright terms: Public domain | W3C validator |