ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemnexp GIF version

Theorem cvgratnnlemnexp 11465
Description: Lemma for cvgratnn 11472. (Contributed by Jim Kingdon, 15-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3 (𝜑𝐴 ∈ ℝ)
cvgratnn.4 (𝜑𝐴 < 1)
cvgratnn.gt0 (𝜑 → 0 < 𝐴)
cvgratnn.6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
cvgratnn.7 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
cvgratnnlemnexp.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
cvgratnnlemnexp (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑁 − 1))))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘

Proof of Theorem cvgratnnlemnexp
Dummy variables 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvgratnnlemnexp.n . . 3 (𝜑𝑁 ∈ ℕ)
2 nnuz 9501 . . 3 ℕ = (ℤ‘1)
31, 2eleqtrdi 2259 . 2 (𝜑𝑁 ∈ (ℤ‘1))
4 2fveq3 5491 . . . . 5 (𝑤 = 1 → (abs‘(𝐹𝑤)) = (abs‘(𝐹‘1)))
5 oveq1 5849 . . . . . . 7 (𝑤 = 1 → (𝑤 − 1) = (1 − 1))
65oveq2d 5858 . . . . . 6 (𝑤 = 1 → (𝐴↑(𝑤 − 1)) = (𝐴↑(1 − 1)))
76oveq2d 5858 . . . . 5 (𝑤 = 1 → ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) = ((abs‘(𝐹‘1)) · (𝐴↑(1 − 1))))
84, 7breq12d 3995 . . . 4 (𝑤 = 1 → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) ↔ (abs‘(𝐹‘1)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(1 − 1)))))
98imbi2d 229 . . 3 (𝑤 = 1 → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1)))) ↔ (𝜑 → (abs‘(𝐹‘1)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(1 − 1))))))
10 2fveq3 5491 . . . . 5 (𝑤 = 𝑘 → (abs‘(𝐹𝑤)) = (abs‘(𝐹𝑘)))
11 oveq1 5849 . . . . . . 7 (𝑤 = 𝑘 → (𝑤 − 1) = (𝑘 − 1))
1211oveq2d 5858 . . . . . 6 (𝑤 = 𝑘 → (𝐴↑(𝑤 − 1)) = (𝐴↑(𝑘 − 1)))
1312oveq2d 5858 . . . . 5 (𝑤 = 𝑘 → ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) = ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))))
1410, 13breq12d 3995 . . . 4 (𝑤 = 𝑘 → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) ↔ (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1)))))
1514imbi2d 229 . . 3 (𝑤 = 𝑘 → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1)))) ↔ (𝜑 → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))))))
16 2fveq3 5491 . . . . 5 (𝑤 = (𝑘 + 1) → (abs‘(𝐹𝑤)) = (abs‘(𝐹‘(𝑘 + 1))))
17 oveq1 5849 . . . . . . 7 (𝑤 = (𝑘 + 1) → (𝑤 − 1) = ((𝑘 + 1) − 1))
1817oveq2d 5858 . . . . . 6 (𝑤 = (𝑘 + 1) → (𝐴↑(𝑤 − 1)) = (𝐴↑((𝑘 + 1) − 1)))
1918oveq2d 5858 . . . . 5 (𝑤 = (𝑘 + 1) → ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) = ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))))
2016, 19breq12d 3995 . . . 4 (𝑤 = (𝑘 + 1) → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) ↔ (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
2120imbi2d 229 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1)))) ↔ (𝜑 → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))))))
22 2fveq3 5491 . . . . 5 (𝑤 = 𝑁 → (abs‘(𝐹𝑤)) = (abs‘(𝐹𝑁)))
23 oveq1 5849 . . . . . . 7 (𝑤 = 𝑁 → (𝑤 − 1) = (𝑁 − 1))
2423oveq2d 5858 . . . . . 6 (𝑤 = 𝑁 → (𝐴↑(𝑤 − 1)) = (𝐴↑(𝑁 − 1)))
2524oveq2d 5858 . . . . 5 (𝑤 = 𝑁 → ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) = ((abs‘(𝐹‘1)) · (𝐴↑(𝑁 − 1))))
2622, 25breq12d 3995 . . . 4 (𝑤 = 𝑁 → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) ↔ (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑁 − 1)))))
2726imbi2d 229 . . 3 (𝑤 = 𝑁 → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1)))) ↔ (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑁 − 1))))))
28 fveq2 5486 . . . . . . . . 9 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
2928eleq1d 2235 . . . . . . . 8 (𝑘 = 1 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹‘1) ∈ ℂ))
30 cvgratnn.6 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
3130ralrimiva 2539 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
32 1nn 8868 . . . . . . . . 9 1 ∈ ℕ
3332a1i 9 . . . . . . . 8 (𝜑 → 1 ∈ ℕ)
3429, 31, 33rspcdva 2835 . . . . . . 7 (𝜑 → (𝐹‘1) ∈ ℂ)
3534abscld 11123 . . . . . 6 (𝜑 → (abs‘(𝐹‘1)) ∈ ℝ)
3635leidd 8412 . . . . 5 (𝜑 → (abs‘(𝐹‘1)) ≤ (abs‘(𝐹‘1)))
37 1m1e0 8926 . . . . . . . . . 10 (1 − 1) = 0
3837a1i 9 . . . . . . . . 9 (𝜑 → (1 − 1) = 0)
3938oveq2d 5858 . . . . . . . 8 (𝜑 → (𝐴↑(1 − 1)) = (𝐴↑0))
40 cvgratnn.3 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
4140recnd 7927 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
4241exp0d 10582 . . . . . . . 8 (𝜑 → (𝐴↑0) = 1)
4339, 42eqtrd 2198 . . . . . . 7 (𝜑 → (𝐴↑(1 − 1)) = 1)
4443oveq2d 5858 . . . . . 6 (𝜑 → ((abs‘(𝐹‘1)) · (𝐴↑(1 − 1))) = ((abs‘(𝐹‘1)) · 1))
4535recnd 7927 . . . . . . 7 (𝜑 → (abs‘(𝐹‘1)) ∈ ℂ)
4645mulid1d 7916 . . . . . 6 (𝜑 → ((abs‘(𝐹‘1)) · 1) = (abs‘(𝐹‘1)))
4744, 46eqtrd 2198 . . . . 5 (𝜑 → ((abs‘(𝐹‘1)) · (𝐴↑(1 − 1))) = (abs‘(𝐹‘1)))
4836, 47breqtrrd 4010 . . . 4 (𝜑 → (abs‘(𝐹‘1)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(1 − 1))))
4948a1i 9 . . 3 (1 ∈ ℤ → (𝜑 → (abs‘(𝐹‘1)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(1 − 1)))))
50 elnnuz 9502 . . . . . 6 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
5130abscld 11123 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹𝑘)) ∈ ℝ)
5235adantr 274 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘1)) ∈ ℝ)
5340adantr 274 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
54 nnm1nn0 9155 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0)
5554adantl 275 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝑘 − 1) ∈ ℕ0)
5653, 55reexpcld 10605 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐴↑(𝑘 − 1)) ∈ ℝ)
5752, 56remulcld 7929 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) ∈ ℝ)
58 0red 7900 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 0 ∈ ℝ)
59 cvgratnn.gt0 . . . . . . . . . . 11 (𝜑 → 0 < 𝐴)
6059adantr 274 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 0 < 𝐴)
6158, 53, 60ltled 8017 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 0 ≤ 𝐴)
62 lemul2a 8754 . . . . . . . . . 10 ((((abs‘(𝐹𝑘)) ∈ ℝ ∧ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1)))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1)))))
6362ex 114 . . . . . . . . 9 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))))))
6451, 57, 53, 61, 63syl112anc 1232 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))))))
6541adantr 274 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
6645adantr 274 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘1)) ∈ ℂ)
6756recnd 7927 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐴↑(𝑘 − 1)) ∈ ℂ)
6865, 66, 67mul12d 8050 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐴 · ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1)))) = ((abs‘(𝐹‘1)) · (𝐴 · (𝐴↑(𝑘 − 1)))))
6965, 55expp1d 10589 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐴↑((𝑘 − 1) + 1)) = ((𝐴↑(𝑘 − 1)) · 𝐴))
70 simpr 109 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
7170nncnd 8871 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
72 1cnd 7915 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 1 ∈ ℂ)
7371, 72, 72addsubd 8230 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) − 1) = ((𝑘 − 1) + 1))
7473oveq2d 5858 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐴↑((𝑘 + 1) − 1)) = (𝐴↑((𝑘 − 1) + 1)))
7565, 67mulcomd 7920 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐴 · (𝐴↑(𝑘 − 1))) = ((𝐴↑(𝑘 − 1)) · 𝐴))
7669, 74, 753eqtr4rd 2209 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐴 · (𝐴↑(𝑘 − 1))) = (𝐴↑((𝑘 + 1) − 1)))
7776oveq2d 5858 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((abs‘(𝐹‘1)) · (𝐴 · (𝐴↑(𝑘 − 1)))) = ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))))
7868, 77eqtrd 2198 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐴 · ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1)))) = ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))))
7978breq2d 3994 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1)))) ↔ (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
8064, 79sylibd 148 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
81 cvgratnn.7 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
82 fveq2 5486 . . . . . . . . . . . 12 (𝑛 = (𝑘 + 1) → (𝐹𝑛) = (𝐹‘(𝑘 + 1)))
8382eleq1d 2235 . . . . . . . . . . 11 (𝑛 = (𝑘 + 1) → ((𝐹𝑛) ∈ ℂ ↔ (𝐹‘(𝑘 + 1)) ∈ ℂ))
84 fveq2 5486 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
8584eleq1d 2235 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑛) ∈ ℂ))
8685cbvralv 2692 . . . . . . . . . . . . 13 (∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ ↔ ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ℂ)
8731, 86sylib 121 . . . . . . . . . . . 12 (𝜑 → ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ℂ)
8887adantr 274 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ℂ)
89 peano2nn 8869 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
9089adantl 275 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
9183, 88, 90rspcdva 2835 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
9291abscld 11123 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ)
9353, 51remulcld 7929 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐴 · (abs‘(𝐹𝑘))) ∈ ℝ)
94 elnnuz 9502 . . . . . . . . . . . . . 14 ((𝑘 + 1) ∈ ℕ ↔ (𝑘 + 1) ∈ (ℤ‘1))
9589, 94sylib 121 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ (ℤ‘1))
9695adantl 275 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ (ℤ‘1))
97 uznn0sub 9497 . . . . . . . . . . . 12 ((𝑘 + 1) ∈ (ℤ‘1) → ((𝑘 + 1) − 1) ∈ ℕ0)
9896, 97syl 14 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) − 1) ∈ ℕ0)
9953, 98reexpcld 10605 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐴↑((𝑘 + 1) − 1)) ∈ ℝ)
10052, 99remulcld 7929 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))) ∈ ℝ)
101 letr 7981 . . . . . . . . 9 (((abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ ∧ (𝐴 · (abs‘(𝐹𝑘))) ∈ ℝ ∧ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))) ∈ ℝ) → (((abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))) ∧ (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
10292, 93, 100, 101syl3anc 1228 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (((abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))) ∧ (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
10381, 102mpand 426 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
10480, 103syld 45 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
10550, 104sylan2br 286 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘1)) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
106105expcom 115 . . . 4 (𝑘 ∈ (ℤ‘1) → (𝜑 → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))))))
107106a2d 26 . . 3 (𝑘 ∈ (ℤ‘1) → ((𝜑 → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1)))) → (𝜑 → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))))))
1089, 15, 21, 27, 49, 107uzind4 9526 . 2 (𝑁 ∈ (ℤ‘1) → (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑁 − 1)))))
1093, 108mpcom 36 1 (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑁 − 1))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968   = wceq 1343  wcel 2136  wral 2444   class class class wbr 3982  cfv 5188  (class class class)co 5842  cc 7751  cr 7752  0cc0 7753  1c1 7754   + caddc 7756   · cmul 7758   < clt 7933  cle 7934  cmin 8069  cn 8857  0cn0 9114  cz 9191  cuz 9466  cexp 10454  abscabs 10939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941
This theorem is referenced by:  cvgratnnlemfm  11470
  Copyright terms: Public domain W3C validator