ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemnexp GIF version

Theorem cvgratnnlemnexp 11286
Description: Lemma for cvgratnn 11293. (Contributed by Jim Kingdon, 15-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3 (𝜑𝐴 ∈ ℝ)
cvgratnn.4 (𝜑𝐴 < 1)
cvgratnn.gt0 (𝜑 → 0 < 𝐴)
cvgratnn.6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
cvgratnn.7 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
cvgratnnlemnexp.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
cvgratnnlemnexp (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑁 − 1))))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘

Proof of Theorem cvgratnnlemnexp
Dummy variables 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvgratnnlemnexp.n . . 3 (𝜑𝑁 ∈ ℕ)
2 nnuz 9354 . . 3 ℕ = (ℤ‘1)
31, 2eleqtrdi 2230 . 2 (𝜑𝑁 ∈ (ℤ‘1))
4 2fveq3 5419 . . . . 5 (𝑤 = 1 → (abs‘(𝐹𝑤)) = (abs‘(𝐹‘1)))
5 oveq1 5774 . . . . . . 7 (𝑤 = 1 → (𝑤 − 1) = (1 − 1))
65oveq2d 5783 . . . . . 6 (𝑤 = 1 → (𝐴↑(𝑤 − 1)) = (𝐴↑(1 − 1)))
76oveq2d 5783 . . . . 5 (𝑤 = 1 → ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) = ((abs‘(𝐹‘1)) · (𝐴↑(1 − 1))))
84, 7breq12d 3937 . . . 4 (𝑤 = 1 → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) ↔ (abs‘(𝐹‘1)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(1 − 1)))))
98imbi2d 229 . . 3 (𝑤 = 1 → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1)))) ↔ (𝜑 → (abs‘(𝐹‘1)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(1 − 1))))))
10 2fveq3 5419 . . . . 5 (𝑤 = 𝑘 → (abs‘(𝐹𝑤)) = (abs‘(𝐹𝑘)))
11 oveq1 5774 . . . . . . 7 (𝑤 = 𝑘 → (𝑤 − 1) = (𝑘 − 1))
1211oveq2d 5783 . . . . . 6 (𝑤 = 𝑘 → (𝐴↑(𝑤 − 1)) = (𝐴↑(𝑘 − 1)))
1312oveq2d 5783 . . . . 5 (𝑤 = 𝑘 → ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) = ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))))
1410, 13breq12d 3937 . . . 4 (𝑤 = 𝑘 → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) ↔ (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1)))))
1514imbi2d 229 . . 3 (𝑤 = 𝑘 → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1)))) ↔ (𝜑 → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))))))
16 2fveq3 5419 . . . . 5 (𝑤 = (𝑘 + 1) → (abs‘(𝐹𝑤)) = (abs‘(𝐹‘(𝑘 + 1))))
17 oveq1 5774 . . . . . . 7 (𝑤 = (𝑘 + 1) → (𝑤 − 1) = ((𝑘 + 1) − 1))
1817oveq2d 5783 . . . . . 6 (𝑤 = (𝑘 + 1) → (𝐴↑(𝑤 − 1)) = (𝐴↑((𝑘 + 1) − 1)))
1918oveq2d 5783 . . . . 5 (𝑤 = (𝑘 + 1) → ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) = ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))))
2016, 19breq12d 3937 . . . 4 (𝑤 = (𝑘 + 1) → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) ↔ (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
2120imbi2d 229 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1)))) ↔ (𝜑 → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))))))
22 2fveq3 5419 . . . . 5 (𝑤 = 𝑁 → (abs‘(𝐹𝑤)) = (abs‘(𝐹𝑁)))
23 oveq1 5774 . . . . . . 7 (𝑤 = 𝑁 → (𝑤 − 1) = (𝑁 − 1))
2423oveq2d 5783 . . . . . 6 (𝑤 = 𝑁 → (𝐴↑(𝑤 − 1)) = (𝐴↑(𝑁 − 1)))
2524oveq2d 5783 . . . . 5 (𝑤 = 𝑁 → ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) = ((abs‘(𝐹‘1)) · (𝐴↑(𝑁 − 1))))
2622, 25breq12d 3937 . . . 4 (𝑤 = 𝑁 → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) ↔ (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑁 − 1)))))
2726imbi2d 229 . . 3 (𝑤 = 𝑁 → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1)))) ↔ (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑁 − 1))))))
28 fveq2 5414 . . . . . . . . 9 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
2928eleq1d 2206 . . . . . . . 8 (𝑘 = 1 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹‘1) ∈ ℂ))
30 cvgratnn.6 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
3130ralrimiva 2503 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
32 1nn 8724 . . . . . . . . 9 1 ∈ ℕ
3332a1i 9 . . . . . . . 8 (𝜑 → 1 ∈ ℕ)
3429, 31, 33rspcdva 2789 . . . . . . 7 (𝜑 → (𝐹‘1) ∈ ℂ)
3534abscld 10946 . . . . . 6 (𝜑 → (abs‘(𝐹‘1)) ∈ ℝ)
3635leidd 8269 . . . . 5 (𝜑 → (abs‘(𝐹‘1)) ≤ (abs‘(𝐹‘1)))
37 1m1e0 8782 . . . . . . . . . 10 (1 − 1) = 0
3837a1i 9 . . . . . . . . 9 (𝜑 → (1 − 1) = 0)
3938oveq2d 5783 . . . . . . . 8 (𝜑 → (𝐴↑(1 − 1)) = (𝐴↑0))
40 cvgratnn.3 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
4140recnd 7787 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
4241exp0d 10411 . . . . . . . 8 (𝜑 → (𝐴↑0) = 1)
4339, 42eqtrd 2170 . . . . . . 7 (𝜑 → (𝐴↑(1 − 1)) = 1)
4443oveq2d 5783 . . . . . 6 (𝜑 → ((abs‘(𝐹‘1)) · (𝐴↑(1 − 1))) = ((abs‘(𝐹‘1)) · 1))
4535recnd 7787 . . . . . . 7 (𝜑 → (abs‘(𝐹‘1)) ∈ ℂ)
4645mulid1d 7776 . . . . . 6 (𝜑 → ((abs‘(𝐹‘1)) · 1) = (abs‘(𝐹‘1)))
4744, 46eqtrd 2170 . . . . 5 (𝜑 → ((abs‘(𝐹‘1)) · (𝐴↑(1 − 1))) = (abs‘(𝐹‘1)))
4836, 47breqtrrd 3951 . . . 4 (𝜑 → (abs‘(𝐹‘1)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(1 − 1))))
4948a1i 9 . . 3 (1 ∈ ℤ → (𝜑 → (abs‘(𝐹‘1)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(1 − 1)))))
50 elnnuz 9355 . . . . . 6 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
5130abscld 10946 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹𝑘)) ∈ ℝ)
5235adantr 274 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘1)) ∈ ℝ)
5340adantr 274 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
54 nnm1nn0 9011 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0)
5554adantl 275 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝑘 − 1) ∈ ℕ0)
5653, 55reexpcld 10434 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐴↑(𝑘 − 1)) ∈ ℝ)
5752, 56remulcld 7789 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) ∈ ℝ)
58 0red 7760 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 0 ∈ ℝ)
59 cvgratnn.gt0 . . . . . . . . . . 11 (𝜑 → 0 < 𝐴)
6059adantr 274 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 0 < 𝐴)
6158, 53, 60ltled 7874 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 0 ≤ 𝐴)
62 lemul2a 8610 . . . . . . . . . 10 ((((abs‘(𝐹𝑘)) ∈ ℝ ∧ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1)))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1)))))
6362ex 114 . . . . . . . . 9 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))))))
6451, 57, 53, 61, 63syl112anc 1220 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))))))
6541adantr 274 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
6645adantr 274 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘1)) ∈ ℂ)
6756recnd 7787 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐴↑(𝑘 − 1)) ∈ ℂ)
6865, 66, 67mul12d 7907 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐴 · ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1)))) = ((abs‘(𝐹‘1)) · (𝐴 · (𝐴↑(𝑘 − 1)))))
6965, 55expp1d 10418 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐴↑((𝑘 − 1) + 1)) = ((𝐴↑(𝑘 − 1)) · 𝐴))
70 simpr 109 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
7170nncnd 8727 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
72 1cnd 7775 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 1 ∈ ℂ)
7371, 72, 72addsubd 8087 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) − 1) = ((𝑘 − 1) + 1))
7473oveq2d 5783 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐴↑((𝑘 + 1) − 1)) = (𝐴↑((𝑘 − 1) + 1)))
7565, 67mulcomd 7780 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐴 · (𝐴↑(𝑘 − 1))) = ((𝐴↑(𝑘 − 1)) · 𝐴))
7669, 74, 753eqtr4rd 2181 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐴 · (𝐴↑(𝑘 − 1))) = (𝐴↑((𝑘 + 1) − 1)))
7776oveq2d 5783 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((abs‘(𝐹‘1)) · (𝐴 · (𝐴↑(𝑘 − 1)))) = ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))))
7868, 77eqtrd 2170 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐴 · ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1)))) = ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))))
7978breq2d 3936 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1)))) ↔ (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
8064, 79sylibd 148 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
81 cvgratnn.7 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
82 fveq2 5414 . . . . . . . . . . . 12 (𝑛 = (𝑘 + 1) → (𝐹𝑛) = (𝐹‘(𝑘 + 1)))
8382eleq1d 2206 . . . . . . . . . . 11 (𝑛 = (𝑘 + 1) → ((𝐹𝑛) ∈ ℂ ↔ (𝐹‘(𝑘 + 1)) ∈ ℂ))
84 fveq2 5414 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
8584eleq1d 2206 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑛) ∈ ℂ))
8685cbvralv 2652 . . . . . . . . . . . . 13 (∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ ↔ ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ℂ)
8731, 86sylib 121 . . . . . . . . . . . 12 (𝜑 → ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ℂ)
8887adantr 274 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ℂ)
89 peano2nn 8725 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
9089adantl 275 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
9183, 88, 90rspcdva 2789 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
9291abscld 10946 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ)
9353, 51remulcld 7789 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐴 · (abs‘(𝐹𝑘))) ∈ ℝ)
94 elnnuz 9355 . . . . . . . . . . . . . 14 ((𝑘 + 1) ∈ ℕ ↔ (𝑘 + 1) ∈ (ℤ‘1))
9589, 94sylib 121 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ (ℤ‘1))
9695adantl 275 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ (ℤ‘1))
97 uznn0sub 9350 . . . . . . . . . . . 12 ((𝑘 + 1) ∈ (ℤ‘1) → ((𝑘 + 1) − 1) ∈ ℕ0)
9896, 97syl 14 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) − 1) ∈ ℕ0)
9953, 98reexpcld 10434 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐴↑((𝑘 + 1) − 1)) ∈ ℝ)
10052, 99remulcld 7789 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))) ∈ ℝ)
101 letr 7840 . . . . . . . . 9 (((abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ ∧ (𝐴 · (abs‘(𝐹𝑘))) ∈ ℝ ∧ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))) ∈ ℝ) → (((abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))) ∧ (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
10292, 93, 100, 101syl3anc 1216 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (((abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))) ∧ (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
10381, 102mpand 425 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
10480, 103syld 45 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
10550, 104sylan2br 286 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘1)) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
106105expcom 115 . . . 4 (𝑘 ∈ (ℤ‘1) → (𝜑 → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))))))
107106a2d 26 . . 3 (𝑘 ∈ (ℤ‘1) → ((𝜑 → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1)))) → (𝜑 → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))))))
1089, 15, 21, 27, 49, 107uzind4 9376 . 2 (𝑁 ∈ (ℤ‘1) → (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑁 − 1)))))
1093, 108mpcom 36 1 (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑁 − 1))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 962   = wceq 1331  wcel 1480  wral 2414   class class class wbr 3924  cfv 5118  (class class class)co 5767  cc 7611  cr 7612  0cc0 7613  1c1 7614   + caddc 7616   · cmul 7618   < clt 7793  cle 7794  cmin 7926  cn 8713  0cn0 8970  cz 9047  cuz 9319  cexp 10285  abscabs 10762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-rp 9435  df-seqfrec 10212  df-exp 10286  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764
This theorem is referenced by:  cvgratnnlemfm  11291
  Copyright terms: Public domain W3C validator