ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemnexp GIF version

Theorem cvgratnnlemnexp 11233
Description: Lemma for cvgratnn 11240. (Contributed by Jim Kingdon, 15-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3 (𝜑𝐴 ∈ ℝ)
cvgratnn.4 (𝜑𝐴 < 1)
cvgratnn.gt0 (𝜑 → 0 < 𝐴)
cvgratnn.6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
cvgratnn.7 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
cvgratnnlemnexp.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
cvgratnnlemnexp (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑁 − 1))))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘

Proof of Theorem cvgratnnlemnexp
Dummy variables 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvgratnnlemnexp.n . . 3 (𝜑𝑁 ∈ ℕ)
2 nnuz 9310 . . 3 ℕ = (ℤ‘1)
31, 2syl6eleq 2208 . 2 (𝜑𝑁 ∈ (ℤ‘1))
4 2fveq3 5392 . . . . 5 (𝑤 = 1 → (abs‘(𝐹𝑤)) = (abs‘(𝐹‘1)))
5 oveq1 5747 . . . . . . 7 (𝑤 = 1 → (𝑤 − 1) = (1 − 1))
65oveq2d 5756 . . . . . 6 (𝑤 = 1 → (𝐴↑(𝑤 − 1)) = (𝐴↑(1 − 1)))
76oveq2d 5756 . . . . 5 (𝑤 = 1 → ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) = ((abs‘(𝐹‘1)) · (𝐴↑(1 − 1))))
84, 7breq12d 3910 . . . 4 (𝑤 = 1 → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) ↔ (abs‘(𝐹‘1)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(1 − 1)))))
98imbi2d 229 . . 3 (𝑤 = 1 → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1)))) ↔ (𝜑 → (abs‘(𝐹‘1)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(1 − 1))))))
10 2fveq3 5392 . . . . 5 (𝑤 = 𝑘 → (abs‘(𝐹𝑤)) = (abs‘(𝐹𝑘)))
11 oveq1 5747 . . . . . . 7 (𝑤 = 𝑘 → (𝑤 − 1) = (𝑘 − 1))
1211oveq2d 5756 . . . . . 6 (𝑤 = 𝑘 → (𝐴↑(𝑤 − 1)) = (𝐴↑(𝑘 − 1)))
1312oveq2d 5756 . . . . 5 (𝑤 = 𝑘 → ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) = ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))))
1410, 13breq12d 3910 . . . 4 (𝑤 = 𝑘 → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) ↔ (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1)))))
1514imbi2d 229 . . 3 (𝑤 = 𝑘 → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1)))) ↔ (𝜑 → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))))))
16 2fveq3 5392 . . . . 5 (𝑤 = (𝑘 + 1) → (abs‘(𝐹𝑤)) = (abs‘(𝐹‘(𝑘 + 1))))
17 oveq1 5747 . . . . . . 7 (𝑤 = (𝑘 + 1) → (𝑤 − 1) = ((𝑘 + 1) − 1))
1817oveq2d 5756 . . . . . 6 (𝑤 = (𝑘 + 1) → (𝐴↑(𝑤 − 1)) = (𝐴↑((𝑘 + 1) − 1)))
1918oveq2d 5756 . . . . 5 (𝑤 = (𝑘 + 1) → ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) = ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))))
2016, 19breq12d 3910 . . . 4 (𝑤 = (𝑘 + 1) → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) ↔ (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
2120imbi2d 229 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1)))) ↔ (𝜑 → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))))))
22 2fveq3 5392 . . . . 5 (𝑤 = 𝑁 → (abs‘(𝐹𝑤)) = (abs‘(𝐹𝑁)))
23 oveq1 5747 . . . . . . 7 (𝑤 = 𝑁 → (𝑤 − 1) = (𝑁 − 1))
2423oveq2d 5756 . . . . . 6 (𝑤 = 𝑁 → (𝐴↑(𝑤 − 1)) = (𝐴↑(𝑁 − 1)))
2524oveq2d 5756 . . . . 5 (𝑤 = 𝑁 → ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) = ((abs‘(𝐹‘1)) · (𝐴↑(𝑁 − 1))))
2622, 25breq12d 3910 . . . 4 (𝑤 = 𝑁 → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) ↔ (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑁 − 1)))))
2726imbi2d 229 . . 3 (𝑤 = 𝑁 → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1)))) ↔ (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑁 − 1))))))
28 fveq2 5387 . . . . . . . . 9 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
2928eleq1d 2184 . . . . . . . 8 (𝑘 = 1 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹‘1) ∈ ℂ))
30 cvgratnn.6 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
3130ralrimiva 2480 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
32 1nn 8688 . . . . . . . . 9 1 ∈ ℕ
3332a1i 9 . . . . . . . 8 (𝜑 → 1 ∈ ℕ)
3429, 31, 33rspcdva 2766 . . . . . . 7 (𝜑 → (𝐹‘1) ∈ ℂ)
3534abscld 10893 . . . . . 6 (𝜑 → (abs‘(𝐹‘1)) ∈ ℝ)
3635leidd 8240 . . . . 5 (𝜑 → (abs‘(𝐹‘1)) ≤ (abs‘(𝐹‘1)))
37 1m1e0 8746 . . . . . . . . . 10 (1 − 1) = 0
3837a1i 9 . . . . . . . . 9 (𝜑 → (1 − 1) = 0)
3938oveq2d 5756 . . . . . . . 8 (𝜑 → (𝐴↑(1 − 1)) = (𝐴↑0))
40 cvgratnn.3 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
4140recnd 7758 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
4241exp0d 10358 . . . . . . . 8 (𝜑 → (𝐴↑0) = 1)
4339, 42eqtrd 2148 . . . . . . 7 (𝜑 → (𝐴↑(1 − 1)) = 1)
4443oveq2d 5756 . . . . . 6 (𝜑 → ((abs‘(𝐹‘1)) · (𝐴↑(1 − 1))) = ((abs‘(𝐹‘1)) · 1))
4535recnd 7758 . . . . . . 7 (𝜑 → (abs‘(𝐹‘1)) ∈ ℂ)
4645mulid1d 7747 . . . . . 6 (𝜑 → ((abs‘(𝐹‘1)) · 1) = (abs‘(𝐹‘1)))
4744, 46eqtrd 2148 . . . . 5 (𝜑 → ((abs‘(𝐹‘1)) · (𝐴↑(1 − 1))) = (abs‘(𝐹‘1)))
4836, 47breqtrrd 3924 . . . 4 (𝜑 → (abs‘(𝐹‘1)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(1 − 1))))
4948a1i 9 . . 3 (1 ∈ ℤ → (𝜑 → (abs‘(𝐹‘1)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(1 − 1)))))
50 elnnuz 9311 . . . . . 6 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
5130abscld 10893 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹𝑘)) ∈ ℝ)
5235adantr 272 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘1)) ∈ ℝ)
5340adantr 272 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
54 nnm1nn0 8969 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0)
5554adantl 273 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝑘 − 1) ∈ ℕ0)
5653, 55reexpcld 10381 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐴↑(𝑘 − 1)) ∈ ℝ)
5752, 56remulcld 7760 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) ∈ ℝ)
58 0red 7731 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 0 ∈ ℝ)
59 cvgratnn.gt0 . . . . . . . . . . 11 (𝜑 → 0 < 𝐴)
6059adantr 272 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 0 < 𝐴)
6158, 53, 60ltled 7845 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 0 ≤ 𝐴)
62 lemul2a 8574 . . . . . . . . . 10 ((((abs‘(𝐹𝑘)) ∈ ℝ ∧ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1)))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1)))))
6362ex 114 . . . . . . . . 9 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))))))
6451, 57, 53, 61, 63syl112anc 1203 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))))))
6541adantr 272 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
6645adantr 272 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘1)) ∈ ℂ)
6756recnd 7758 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐴↑(𝑘 − 1)) ∈ ℂ)
6865, 66, 67mul12d 7878 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐴 · ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1)))) = ((abs‘(𝐹‘1)) · (𝐴 · (𝐴↑(𝑘 − 1)))))
6965, 55expp1d 10365 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐴↑((𝑘 − 1) + 1)) = ((𝐴↑(𝑘 − 1)) · 𝐴))
70 simpr 109 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
7170nncnd 8691 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
72 1cnd 7746 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 1 ∈ ℂ)
7371, 72, 72addsubd 8058 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) − 1) = ((𝑘 − 1) + 1))
7473oveq2d 5756 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐴↑((𝑘 + 1) − 1)) = (𝐴↑((𝑘 − 1) + 1)))
7565, 67mulcomd 7751 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐴 · (𝐴↑(𝑘 − 1))) = ((𝐴↑(𝑘 − 1)) · 𝐴))
7669, 74, 753eqtr4rd 2159 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐴 · (𝐴↑(𝑘 − 1))) = (𝐴↑((𝑘 + 1) − 1)))
7776oveq2d 5756 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((abs‘(𝐹‘1)) · (𝐴 · (𝐴↑(𝑘 − 1)))) = ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))))
7868, 77eqtrd 2148 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐴 · ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1)))) = ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))))
7978breq2d 3909 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1)))) ↔ (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
8064, 79sylibd 148 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
81 cvgratnn.7 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
82 fveq2 5387 . . . . . . . . . . . 12 (𝑛 = (𝑘 + 1) → (𝐹𝑛) = (𝐹‘(𝑘 + 1)))
8382eleq1d 2184 . . . . . . . . . . 11 (𝑛 = (𝑘 + 1) → ((𝐹𝑛) ∈ ℂ ↔ (𝐹‘(𝑘 + 1)) ∈ ℂ))
84 fveq2 5387 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
8584eleq1d 2184 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑛) ∈ ℂ))
8685cbvralv 2629 . . . . . . . . . . . . 13 (∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ ↔ ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ℂ)
8731, 86sylib 121 . . . . . . . . . . . 12 (𝜑 → ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ℂ)
8887adantr 272 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ℂ)
89 peano2nn 8689 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
9089adantl 273 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
9183, 88, 90rspcdva 2766 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
9291abscld 10893 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ)
9353, 51remulcld 7760 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐴 · (abs‘(𝐹𝑘))) ∈ ℝ)
94 elnnuz 9311 . . . . . . . . . . . . . 14 ((𝑘 + 1) ∈ ℕ ↔ (𝑘 + 1) ∈ (ℤ‘1))
9589, 94sylib 121 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ (ℤ‘1))
9695adantl 273 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ (ℤ‘1))
97 uznn0sub 9306 . . . . . . . . . . . 12 ((𝑘 + 1) ∈ (ℤ‘1) → ((𝑘 + 1) − 1) ∈ ℕ0)
9896, 97syl 14 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) − 1) ∈ ℕ0)
9953, 98reexpcld 10381 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐴↑((𝑘 + 1) − 1)) ∈ ℝ)
10052, 99remulcld 7760 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))) ∈ ℝ)
101 letr 7811 . . . . . . . . 9 (((abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ ∧ (𝐴 · (abs‘(𝐹𝑘))) ∈ ℝ ∧ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))) ∈ ℝ) → (((abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))) ∧ (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
10292, 93, 100, 101syl3anc 1199 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (((abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))) ∧ (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
10381, 102mpand 423 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
10480, 103syld 45 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
10550, 104sylan2br 284 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘1)) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
106105expcom 115 . . . 4 (𝑘 ∈ (ℤ‘1) → (𝜑 → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))))))
107106a2d 26 . . 3 (𝑘 ∈ (ℤ‘1) → ((𝜑 → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1)))) → (𝜑 → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))))))
1089, 15, 21, 27, 49, 107uzind4 9332 . 2 (𝑁 ∈ (ℤ‘1) → (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑁 − 1)))))
1093, 108mpcom 36 1 (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑁 − 1))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 945   = wceq 1314  wcel 1463  wral 2391   class class class wbr 3897  cfv 5091  (class class class)co 5740  cc 7582  cr 7583  0cc0 7584  1c1 7585   + caddc 7587   · cmul 7589   < clt 7764  cle 7765  cmin 7897  cn 8677  0cn0 8928  cz 9005  cuz 9275  cexp 10232  abscabs 10709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702  ax-arch 7703  ax-caucvg 7704
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-frec 6254  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8393  df-inn 8678  df-2 8736  df-3 8737  df-4 8738  df-n0 8929  df-z 9006  df-uz 9276  df-rp 9391  df-seqfrec 10159  df-exp 10233  df-cj 10554  df-re 10555  df-im 10556  df-rsqrt 10710  df-abs 10711
This theorem is referenced by:  cvgratnnlemfm  11238
  Copyright terms: Public domain W3C validator