ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemnexp GIF version

Theorem cvgratnnlemnexp 11667
Description: Lemma for cvgratnn 11674. (Contributed by Jim Kingdon, 15-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3 (𝜑𝐴 ∈ ℝ)
cvgratnn.4 (𝜑𝐴 < 1)
cvgratnn.gt0 (𝜑 → 0 < 𝐴)
cvgratnn.6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
cvgratnn.7 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
cvgratnnlemnexp.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
cvgratnnlemnexp (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑁 − 1))))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘

Proof of Theorem cvgratnnlemnexp
Dummy variables 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvgratnnlemnexp.n . . 3 (𝜑𝑁 ∈ ℕ)
2 nnuz 9628 . . 3 ℕ = (ℤ‘1)
31, 2eleqtrdi 2286 . 2 (𝜑𝑁 ∈ (ℤ‘1))
4 2fveq3 5559 . . . . 5 (𝑤 = 1 → (abs‘(𝐹𝑤)) = (abs‘(𝐹‘1)))
5 oveq1 5925 . . . . . . 7 (𝑤 = 1 → (𝑤 − 1) = (1 − 1))
65oveq2d 5934 . . . . . 6 (𝑤 = 1 → (𝐴↑(𝑤 − 1)) = (𝐴↑(1 − 1)))
76oveq2d 5934 . . . . 5 (𝑤 = 1 → ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) = ((abs‘(𝐹‘1)) · (𝐴↑(1 − 1))))
84, 7breq12d 4042 . . . 4 (𝑤 = 1 → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) ↔ (abs‘(𝐹‘1)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(1 − 1)))))
98imbi2d 230 . . 3 (𝑤 = 1 → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1)))) ↔ (𝜑 → (abs‘(𝐹‘1)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(1 − 1))))))
10 2fveq3 5559 . . . . 5 (𝑤 = 𝑘 → (abs‘(𝐹𝑤)) = (abs‘(𝐹𝑘)))
11 oveq1 5925 . . . . . . 7 (𝑤 = 𝑘 → (𝑤 − 1) = (𝑘 − 1))
1211oveq2d 5934 . . . . . 6 (𝑤 = 𝑘 → (𝐴↑(𝑤 − 1)) = (𝐴↑(𝑘 − 1)))
1312oveq2d 5934 . . . . 5 (𝑤 = 𝑘 → ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) = ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))))
1410, 13breq12d 4042 . . . 4 (𝑤 = 𝑘 → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) ↔ (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1)))))
1514imbi2d 230 . . 3 (𝑤 = 𝑘 → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1)))) ↔ (𝜑 → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))))))
16 2fveq3 5559 . . . . 5 (𝑤 = (𝑘 + 1) → (abs‘(𝐹𝑤)) = (abs‘(𝐹‘(𝑘 + 1))))
17 oveq1 5925 . . . . . . 7 (𝑤 = (𝑘 + 1) → (𝑤 − 1) = ((𝑘 + 1) − 1))
1817oveq2d 5934 . . . . . 6 (𝑤 = (𝑘 + 1) → (𝐴↑(𝑤 − 1)) = (𝐴↑((𝑘 + 1) − 1)))
1918oveq2d 5934 . . . . 5 (𝑤 = (𝑘 + 1) → ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) = ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))))
2016, 19breq12d 4042 . . . 4 (𝑤 = (𝑘 + 1) → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) ↔ (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
2120imbi2d 230 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1)))) ↔ (𝜑 → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))))))
22 2fveq3 5559 . . . . 5 (𝑤 = 𝑁 → (abs‘(𝐹𝑤)) = (abs‘(𝐹𝑁)))
23 oveq1 5925 . . . . . . 7 (𝑤 = 𝑁 → (𝑤 − 1) = (𝑁 − 1))
2423oveq2d 5934 . . . . . 6 (𝑤 = 𝑁 → (𝐴↑(𝑤 − 1)) = (𝐴↑(𝑁 − 1)))
2524oveq2d 5934 . . . . 5 (𝑤 = 𝑁 → ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) = ((abs‘(𝐹‘1)) · (𝐴↑(𝑁 − 1))))
2622, 25breq12d 4042 . . . 4 (𝑤 = 𝑁 → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) ↔ (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑁 − 1)))))
2726imbi2d 230 . . 3 (𝑤 = 𝑁 → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1)))) ↔ (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑁 − 1))))))
28 fveq2 5554 . . . . . . . . 9 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
2928eleq1d 2262 . . . . . . . 8 (𝑘 = 1 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹‘1) ∈ ℂ))
30 cvgratnn.6 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
3130ralrimiva 2567 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
32 1nn 8993 . . . . . . . . 9 1 ∈ ℕ
3332a1i 9 . . . . . . . 8 (𝜑 → 1 ∈ ℕ)
3429, 31, 33rspcdva 2869 . . . . . . 7 (𝜑 → (𝐹‘1) ∈ ℂ)
3534abscld 11325 . . . . . 6 (𝜑 → (abs‘(𝐹‘1)) ∈ ℝ)
3635leidd 8533 . . . . 5 (𝜑 → (abs‘(𝐹‘1)) ≤ (abs‘(𝐹‘1)))
37 1m1e0 9051 . . . . . . . . . 10 (1 − 1) = 0
3837a1i 9 . . . . . . . . 9 (𝜑 → (1 − 1) = 0)
3938oveq2d 5934 . . . . . . . 8 (𝜑 → (𝐴↑(1 − 1)) = (𝐴↑0))
40 cvgratnn.3 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
4140recnd 8048 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
4241exp0d 10738 . . . . . . . 8 (𝜑 → (𝐴↑0) = 1)
4339, 42eqtrd 2226 . . . . . . 7 (𝜑 → (𝐴↑(1 − 1)) = 1)
4443oveq2d 5934 . . . . . 6 (𝜑 → ((abs‘(𝐹‘1)) · (𝐴↑(1 − 1))) = ((abs‘(𝐹‘1)) · 1))
4535recnd 8048 . . . . . . 7 (𝜑 → (abs‘(𝐹‘1)) ∈ ℂ)
4645mulridd 8036 . . . . . 6 (𝜑 → ((abs‘(𝐹‘1)) · 1) = (abs‘(𝐹‘1)))
4744, 46eqtrd 2226 . . . . 5 (𝜑 → ((abs‘(𝐹‘1)) · (𝐴↑(1 − 1))) = (abs‘(𝐹‘1)))
4836, 47breqtrrd 4057 . . . 4 (𝜑 → (abs‘(𝐹‘1)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(1 − 1))))
4948a1i 9 . . 3 (1 ∈ ℤ → (𝜑 → (abs‘(𝐹‘1)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(1 − 1)))))
50 elnnuz 9629 . . . . . 6 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
5130abscld 11325 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹𝑘)) ∈ ℝ)
5235adantr 276 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘1)) ∈ ℝ)
5340adantr 276 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
54 nnm1nn0 9281 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0)
5554adantl 277 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝑘 − 1) ∈ ℕ0)
5653, 55reexpcld 10761 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐴↑(𝑘 − 1)) ∈ ℝ)
5752, 56remulcld 8050 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) ∈ ℝ)
58 0red 8020 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 0 ∈ ℝ)
59 cvgratnn.gt0 . . . . . . . . . . 11 (𝜑 → 0 < 𝐴)
6059adantr 276 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 0 < 𝐴)
6158, 53, 60ltled 8138 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 0 ≤ 𝐴)
62 lemul2a 8878 . . . . . . . . . 10 ((((abs‘(𝐹𝑘)) ∈ ℝ ∧ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1)))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1)))))
6362ex 115 . . . . . . . . 9 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))))))
6451, 57, 53, 61, 63syl112anc 1253 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))))))
6541adantr 276 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
6645adantr 276 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘1)) ∈ ℂ)
6756recnd 8048 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐴↑(𝑘 − 1)) ∈ ℂ)
6865, 66, 67mul12d 8171 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐴 · ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1)))) = ((abs‘(𝐹‘1)) · (𝐴 · (𝐴↑(𝑘 − 1)))))
6965, 55expp1d 10745 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐴↑((𝑘 − 1) + 1)) = ((𝐴↑(𝑘 − 1)) · 𝐴))
70 simpr 110 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
7170nncnd 8996 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
72 1cnd 8035 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 1 ∈ ℂ)
7371, 72, 72addsubd 8351 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) − 1) = ((𝑘 − 1) + 1))
7473oveq2d 5934 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐴↑((𝑘 + 1) − 1)) = (𝐴↑((𝑘 − 1) + 1)))
7565, 67mulcomd 8041 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐴 · (𝐴↑(𝑘 − 1))) = ((𝐴↑(𝑘 − 1)) · 𝐴))
7669, 74, 753eqtr4rd 2237 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐴 · (𝐴↑(𝑘 − 1))) = (𝐴↑((𝑘 + 1) − 1)))
7776oveq2d 5934 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((abs‘(𝐹‘1)) · (𝐴 · (𝐴↑(𝑘 − 1)))) = ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))))
7868, 77eqtrd 2226 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐴 · ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1)))) = ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))))
7978breq2d 4041 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1)))) ↔ (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
8064, 79sylibd 149 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
81 cvgratnn.7 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
82 fveq2 5554 . . . . . . . . . . . 12 (𝑛 = (𝑘 + 1) → (𝐹𝑛) = (𝐹‘(𝑘 + 1)))
8382eleq1d 2262 . . . . . . . . . . 11 (𝑛 = (𝑘 + 1) → ((𝐹𝑛) ∈ ℂ ↔ (𝐹‘(𝑘 + 1)) ∈ ℂ))
84 fveq2 5554 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
8584eleq1d 2262 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑛) ∈ ℂ))
8685cbvralv 2726 . . . . . . . . . . . . 13 (∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ ↔ ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ℂ)
8731, 86sylib 122 . . . . . . . . . . . 12 (𝜑 → ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ℂ)
8887adantr 276 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ℂ)
89 peano2nn 8994 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
9089adantl 277 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
9183, 88, 90rspcdva 2869 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
9291abscld 11325 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ)
9353, 51remulcld 8050 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐴 · (abs‘(𝐹𝑘))) ∈ ℝ)
94 elnnuz 9629 . . . . . . . . . . . . . 14 ((𝑘 + 1) ∈ ℕ ↔ (𝑘 + 1) ∈ (ℤ‘1))
9589, 94sylib 122 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ (ℤ‘1))
9695adantl 277 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ (ℤ‘1))
97 uznn0sub 9624 . . . . . . . . . . . 12 ((𝑘 + 1) ∈ (ℤ‘1) → ((𝑘 + 1) − 1) ∈ ℕ0)
9896, 97syl 14 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) − 1) ∈ ℕ0)
9953, 98reexpcld 10761 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐴↑((𝑘 + 1) − 1)) ∈ ℝ)
10052, 99remulcld 8050 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))) ∈ ℝ)
101 letr 8102 . . . . . . . . 9 (((abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ ∧ (𝐴 · (abs‘(𝐹𝑘))) ∈ ℝ ∧ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))) ∈ ℝ) → (((abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))) ∧ (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
10292, 93, 100, 101syl3anc 1249 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (((abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))) ∧ (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
10381, 102mpand 429 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
10480, 103syld 45 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
10550, 104sylan2br 288 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘1)) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
106105expcom 116 . . . 4 (𝑘 ∈ (ℤ‘1) → (𝜑 → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))))))
107106a2d 26 . . 3 (𝑘 ∈ (ℤ‘1) → ((𝜑 → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1)))) → (𝜑 → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))))))
1089, 15, 21, 27, 49, 107uzind4 9653 . 2 (𝑁 ∈ (ℤ‘1) → (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑁 − 1)))))
1093, 108mpcom 36 1 (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑁 − 1))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  wral 2472   class class class wbr 4029  cfv 5254  (class class class)co 5918  cc 7870  cr 7871  0cc0 7872  1c1 7873   + caddc 7875   · cmul 7877   < clt 8054  cle 8055  cmin 8190  cn 8982  0cn0 9240  cz 9317  cuz 9592  cexp 10609  abscabs 11141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-rp 9720  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143
This theorem is referenced by:  cvgratnnlemfm  11672
  Copyright terms: Public domain W3C validator