ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemnexp GIF version

Theorem cvgratnnlemnexp 11487
Description: Lemma for cvgratnn 11494. (Contributed by Jim Kingdon, 15-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3 (𝜑𝐴 ∈ ℝ)
cvgratnn.4 (𝜑𝐴 < 1)
cvgratnn.gt0 (𝜑 → 0 < 𝐴)
cvgratnn.6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
cvgratnn.7 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
cvgratnnlemnexp.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
cvgratnnlemnexp (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑁 − 1))))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘

Proof of Theorem cvgratnnlemnexp
Dummy variables 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvgratnnlemnexp.n . . 3 (𝜑𝑁 ∈ ℕ)
2 nnuz 9522 . . 3 ℕ = (ℤ‘1)
31, 2eleqtrdi 2263 . 2 (𝜑𝑁 ∈ (ℤ‘1))
4 2fveq3 5501 . . . . 5 (𝑤 = 1 → (abs‘(𝐹𝑤)) = (abs‘(𝐹‘1)))
5 oveq1 5860 . . . . . . 7 (𝑤 = 1 → (𝑤 − 1) = (1 − 1))
65oveq2d 5869 . . . . . 6 (𝑤 = 1 → (𝐴↑(𝑤 − 1)) = (𝐴↑(1 − 1)))
76oveq2d 5869 . . . . 5 (𝑤 = 1 → ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) = ((abs‘(𝐹‘1)) · (𝐴↑(1 − 1))))
84, 7breq12d 4002 . . . 4 (𝑤 = 1 → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) ↔ (abs‘(𝐹‘1)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(1 − 1)))))
98imbi2d 229 . . 3 (𝑤 = 1 → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1)))) ↔ (𝜑 → (abs‘(𝐹‘1)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(1 − 1))))))
10 2fveq3 5501 . . . . 5 (𝑤 = 𝑘 → (abs‘(𝐹𝑤)) = (abs‘(𝐹𝑘)))
11 oveq1 5860 . . . . . . 7 (𝑤 = 𝑘 → (𝑤 − 1) = (𝑘 − 1))
1211oveq2d 5869 . . . . . 6 (𝑤 = 𝑘 → (𝐴↑(𝑤 − 1)) = (𝐴↑(𝑘 − 1)))
1312oveq2d 5869 . . . . 5 (𝑤 = 𝑘 → ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) = ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))))
1410, 13breq12d 4002 . . . 4 (𝑤 = 𝑘 → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) ↔ (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1)))))
1514imbi2d 229 . . 3 (𝑤 = 𝑘 → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1)))) ↔ (𝜑 → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))))))
16 2fveq3 5501 . . . . 5 (𝑤 = (𝑘 + 1) → (abs‘(𝐹𝑤)) = (abs‘(𝐹‘(𝑘 + 1))))
17 oveq1 5860 . . . . . . 7 (𝑤 = (𝑘 + 1) → (𝑤 − 1) = ((𝑘 + 1) − 1))
1817oveq2d 5869 . . . . . 6 (𝑤 = (𝑘 + 1) → (𝐴↑(𝑤 − 1)) = (𝐴↑((𝑘 + 1) − 1)))
1918oveq2d 5869 . . . . 5 (𝑤 = (𝑘 + 1) → ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) = ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))))
2016, 19breq12d 4002 . . . 4 (𝑤 = (𝑘 + 1) → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) ↔ (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
2120imbi2d 229 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1)))) ↔ (𝜑 → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))))))
22 2fveq3 5501 . . . . 5 (𝑤 = 𝑁 → (abs‘(𝐹𝑤)) = (abs‘(𝐹𝑁)))
23 oveq1 5860 . . . . . . 7 (𝑤 = 𝑁 → (𝑤 − 1) = (𝑁 − 1))
2423oveq2d 5869 . . . . . 6 (𝑤 = 𝑁 → (𝐴↑(𝑤 − 1)) = (𝐴↑(𝑁 − 1)))
2524oveq2d 5869 . . . . 5 (𝑤 = 𝑁 → ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) = ((abs‘(𝐹‘1)) · (𝐴↑(𝑁 − 1))))
2622, 25breq12d 4002 . . . 4 (𝑤 = 𝑁 → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1))) ↔ (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑁 − 1)))))
2726imbi2d 229 . . 3 (𝑤 = 𝑁 → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑤 − 1)))) ↔ (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑁 − 1))))))
28 fveq2 5496 . . . . . . . . 9 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
2928eleq1d 2239 . . . . . . . 8 (𝑘 = 1 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹‘1) ∈ ℂ))
30 cvgratnn.6 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
3130ralrimiva 2543 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
32 1nn 8889 . . . . . . . . 9 1 ∈ ℕ
3332a1i 9 . . . . . . . 8 (𝜑 → 1 ∈ ℕ)
3429, 31, 33rspcdva 2839 . . . . . . 7 (𝜑 → (𝐹‘1) ∈ ℂ)
3534abscld 11145 . . . . . 6 (𝜑 → (abs‘(𝐹‘1)) ∈ ℝ)
3635leidd 8433 . . . . 5 (𝜑 → (abs‘(𝐹‘1)) ≤ (abs‘(𝐹‘1)))
37 1m1e0 8947 . . . . . . . . . 10 (1 − 1) = 0
3837a1i 9 . . . . . . . . 9 (𝜑 → (1 − 1) = 0)
3938oveq2d 5869 . . . . . . . 8 (𝜑 → (𝐴↑(1 − 1)) = (𝐴↑0))
40 cvgratnn.3 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
4140recnd 7948 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
4241exp0d 10603 . . . . . . . 8 (𝜑 → (𝐴↑0) = 1)
4339, 42eqtrd 2203 . . . . . . 7 (𝜑 → (𝐴↑(1 − 1)) = 1)
4443oveq2d 5869 . . . . . 6 (𝜑 → ((abs‘(𝐹‘1)) · (𝐴↑(1 − 1))) = ((abs‘(𝐹‘1)) · 1))
4535recnd 7948 . . . . . . 7 (𝜑 → (abs‘(𝐹‘1)) ∈ ℂ)
4645mulid1d 7937 . . . . . 6 (𝜑 → ((abs‘(𝐹‘1)) · 1) = (abs‘(𝐹‘1)))
4744, 46eqtrd 2203 . . . . 5 (𝜑 → ((abs‘(𝐹‘1)) · (𝐴↑(1 − 1))) = (abs‘(𝐹‘1)))
4836, 47breqtrrd 4017 . . . 4 (𝜑 → (abs‘(𝐹‘1)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(1 − 1))))
4948a1i 9 . . 3 (1 ∈ ℤ → (𝜑 → (abs‘(𝐹‘1)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(1 − 1)))))
50 elnnuz 9523 . . . . . 6 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
5130abscld 11145 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹𝑘)) ∈ ℝ)
5235adantr 274 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘1)) ∈ ℝ)
5340adantr 274 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
54 nnm1nn0 9176 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0)
5554adantl 275 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝑘 − 1) ∈ ℕ0)
5653, 55reexpcld 10626 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐴↑(𝑘 − 1)) ∈ ℝ)
5752, 56remulcld 7950 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) ∈ ℝ)
58 0red 7921 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 0 ∈ ℝ)
59 cvgratnn.gt0 . . . . . . . . . . 11 (𝜑 → 0 < 𝐴)
6059adantr 274 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 0 < 𝐴)
6158, 53, 60ltled 8038 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 0 ≤ 𝐴)
62 lemul2a 8775 . . . . . . . . . 10 ((((abs‘(𝐹𝑘)) ∈ ℝ ∧ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1)))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1)))))
6362ex 114 . . . . . . . . 9 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))))))
6451, 57, 53, 61, 63syl112anc 1237 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))))))
6541adantr 274 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
6645adantr 274 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘1)) ∈ ℂ)
6756recnd 7948 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐴↑(𝑘 − 1)) ∈ ℂ)
6865, 66, 67mul12d 8071 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐴 · ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1)))) = ((abs‘(𝐹‘1)) · (𝐴 · (𝐴↑(𝑘 − 1)))))
6965, 55expp1d 10610 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐴↑((𝑘 − 1) + 1)) = ((𝐴↑(𝑘 − 1)) · 𝐴))
70 simpr 109 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
7170nncnd 8892 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
72 1cnd 7936 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 1 ∈ ℂ)
7371, 72, 72addsubd 8251 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) − 1) = ((𝑘 − 1) + 1))
7473oveq2d 5869 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐴↑((𝑘 + 1) − 1)) = (𝐴↑((𝑘 − 1) + 1)))
7565, 67mulcomd 7941 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐴 · (𝐴↑(𝑘 − 1))) = ((𝐴↑(𝑘 − 1)) · 𝐴))
7669, 74, 753eqtr4rd 2214 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐴 · (𝐴↑(𝑘 − 1))) = (𝐴↑((𝑘 + 1) − 1)))
7776oveq2d 5869 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((abs‘(𝐹‘1)) · (𝐴 · (𝐴↑(𝑘 − 1)))) = ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))))
7868, 77eqtrd 2203 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐴 · ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1)))) = ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))))
7978breq2d 4001 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1)))) ↔ (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
8064, 79sylibd 148 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
81 cvgratnn.7 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
82 fveq2 5496 . . . . . . . . . . . 12 (𝑛 = (𝑘 + 1) → (𝐹𝑛) = (𝐹‘(𝑘 + 1)))
8382eleq1d 2239 . . . . . . . . . . 11 (𝑛 = (𝑘 + 1) → ((𝐹𝑛) ∈ ℂ ↔ (𝐹‘(𝑘 + 1)) ∈ ℂ))
84 fveq2 5496 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
8584eleq1d 2239 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑛) ∈ ℂ))
8685cbvralv 2696 . . . . . . . . . . . . 13 (∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ ↔ ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ℂ)
8731, 86sylib 121 . . . . . . . . . . . 12 (𝜑 → ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ℂ)
8887adantr 274 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ℂ)
89 peano2nn 8890 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
9089adantl 275 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
9183, 88, 90rspcdva 2839 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
9291abscld 11145 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ)
9353, 51remulcld 7950 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐴 · (abs‘(𝐹𝑘))) ∈ ℝ)
94 elnnuz 9523 . . . . . . . . . . . . . 14 ((𝑘 + 1) ∈ ℕ ↔ (𝑘 + 1) ∈ (ℤ‘1))
9589, 94sylib 121 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ (ℤ‘1))
9695adantl 275 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ (ℤ‘1))
97 uznn0sub 9518 . . . . . . . . . . . 12 ((𝑘 + 1) ∈ (ℤ‘1) → ((𝑘 + 1) − 1) ∈ ℕ0)
9896, 97syl 14 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) − 1) ∈ ℕ0)
9953, 98reexpcld 10626 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐴↑((𝑘 + 1) − 1)) ∈ ℝ)
10052, 99remulcld 7950 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))) ∈ ℝ)
101 letr 8002 . . . . . . . . 9 (((abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ ∧ (𝐴 · (abs‘(𝐹𝑘))) ∈ ℝ ∧ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))) ∈ ℝ) → (((abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))) ∧ (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
10292, 93, 100, 101syl3anc 1233 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (((abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))) ∧ (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
10381, 102mpand 427 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
10480, 103syld 45 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
10550, 104sylan2br 286 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘1)) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1)))))
106105expcom 115 . . . 4 (𝑘 ∈ (ℤ‘1) → (𝜑 → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))))))
107106a2d 26 . . 3 (𝑘 ∈ (ℤ‘1) → ((𝜑 → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑘 − 1)))) → (𝜑 → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘1)) · (𝐴↑((𝑘 + 1) − 1))))))
1089, 15, 21, 27, 49, 107uzind4 9547 . 2 (𝑁 ∈ (ℤ‘1) → (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑁 − 1)))))
1093, 108mpcom 36 1 (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑁 − 1))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973   = wceq 1348  wcel 2141  wral 2448   class class class wbr 3989  cfv 5198  (class class class)co 5853  cc 7772  cr 7773  0cc0 7774  1c1 7775   + caddc 7777   · cmul 7779   < clt 7954  cle 7955  cmin 8090  cn 8878  0cn0 9135  cz 9212  cuz 9487  cexp 10475  abscabs 10961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963
This theorem is referenced by:  cvgratnnlemfm  11492
  Copyright terms: Public domain W3C validator