![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zltp1le | GIF version |
Description: Integer ordering relation. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
zltp1le | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnge1 8956 | . . . 4 ⊢ ((𝑁 − 𝑀) ∈ ℕ → 1 ≤ (𝑁 − 𝑀)) | |
2 | 1 | a1i 9 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 − 𝑀) ∈ ℕ → 1 ≤ (𝑁 − 𝑀))) |
3 | znnsub 9318 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ)) | |
4 | zre 9271 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
5 | zre 9271 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
6 | 1re 7970 | . . . . 5 ⊢ 1 ∈ ℝ | |
7 | leaddsub2 8410 | . . . . 5 ⊢ ((𝑀 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 1) ≤ 𝑁 ↔ 1 ≤ (𝑁 − 𝑀))) | |
8 | 6, 7 | mp3an2 1335 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 1) ≤ 𝑁 ↔ 1 ≤ (𝑁 − 𝑀))) |
9 | 4, 5, 8 | syl2an 289 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑁 ↔ 1 ≤ (𝑁 − 𝑀))) |
10 | 2, 3, 9 | 3imtr4d 203 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 → (𝑀 + 1) ≤ 𝑁)) |
11 | 4 | adantr 276 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ) |
12 | 11 | ltp1d 8901 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 < (𝑀 + 1)) |
13 | peano2re 8107 | . . . . 5 ⊢ (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ) | |
14 | 11, 13 | syl 14 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 1) ∈ ℝ) |
15 | 5 | adantl 277 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ) |
16 | ltletr 8061 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ (𝑀 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 < (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁) → 𝑀 < 𝑁)) | |
17 | 11, 14, 15, 16 | syl3anc 1248 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 < (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁) → 𝑀 < 𝑁)) |
18 | 12, 17 | mpand 429 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑁 → 𝑀 < 𝑁)) |
19 | 10, 18 | impbid 129 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2158 class class class wbr 4015 (class class class)co 5888 ℝcr 7824 1c1 7826 + caddc 7828 < clt 8006 ≤ cle 8007 − cmin 8142 ℕcn 8933 ℤcz 9267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-addcom 7925 ax-addass 7927 ax-distr 7929 ax-i2m1 7930 ax-0lt1 7931 ax-0id 7933 ax-rnegex 7934 ax-cnre 7936 ax-pre-ltirr 7937 ax-pre-ltwlin 7938 ax-pre-lttrn 7939 ax-pre-ltadd 7941 |
This theorem depends on definitions: df-bi 117 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-br 4016 df-opab 4077 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-iota 5190 df-fun 5230 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-pnf 8008 df-mnf 8009 df-xr 8010 df-ltxr 8011 df-le 8012 df-sub 8144 df-neg 8145 df-inn 8934 df-n0 9191 df-z 9268 |
This theorem is referenced by: zleltp1 9322 zlem1lt 9323 zgt0ge1 9325 nnltp1le 9327 nn0ltp1le 9329 btwnnz 9361 uzind2 9379 fzind 9382 btwnapz 9397 eluzp1l 9566 eluz2b1 9615 zltaddlt1le 10021 fzsplit2 10064 m1modge3gt1 10385 seq3f1olemqsumkj 10512 seq3f1olemqsumk 10513 bcval5 10757 seq3coll 10836 cvgratnnlemseq 11548 nn0o1gt2 11924 divalglemnqt 11939 zsupcllemstep 11960 infssuzex 11964 suprzubdc 11967 isprm3 12132 dvdsnprmd 12139 prmgt1 12146 oddprmge3 12149 znege1 12192 hashdvds 12235 lgsdilem2 14733 |
Copyright terms: Public domain | W3C validator |