| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zltp1le | GIF version | ||
| Description: Integer ordering relation. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| zltp1le | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnge1 9032 | . . . 4 ⊢ ((𝑁 − 𝑀) ∈ ℕ → 1 ≤ (𝑁 − 𝑀)) | |
| 2 | 1 | a1i 9 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 − 𝑀) ∈ ℕ → 1 ≤ (𝑁 − 𝑀))) |
| 3 | znnsub 9396 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ)) | |
| 4 | zre 9349 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 5 | zre 9349 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 6 | 1re 8044 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 7 | leaddsub2 8485 | . . . . 5 ⊢ ((𝑀 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 1) ≤ 𝑁 ↔ 1 ≤ (𝑁 − 𝑀))) | |
| 8 | 6, 7 | mp3an2 1336 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 1) ≤ 𝑁 ↔ 1 ≤ (𝑁 − 𝑀))) |
| 9 | 4, 5, 8 | syl2an 289 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑁 ↔ 1 ≤ (𝑁 − 𝑀))) |
| 10 | 2, 3, 9 | 3imtr4d 203 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 → (𝑀 + 1) ≤ 𝑁)) |
| 11 | 4 | adantr 276 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ) |
| 12 | 11 | ltp1d 8976 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 < (𝑀 + 1)) |
| 13 | peano2re 8181 | . . . . 5 ⊢ (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ) | |
| 14 | 11, 13 | syl 14 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 1) ∈ ℝ) |
| 15 | 5 | adantl 277 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ) |
| 16 | ltletr 8135 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ (𝑀 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 < (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁) → 𝑀 < 𝑁)) | |
| 17 | 11, 14, 15, 16 | syl3anc 1249 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 < (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁) → 𝑀 < 𝑁)) |
| 18 | 12, 17 | mpand 429 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑁 → 𝑀 < 𝑁)) |
| 19 | 10, 18 | impbid 129 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2167 class class class wbr 4034 (class class class)co 5925 ℝcr 7897 1c1 7899 + caddc 7901 < clt 8080 ≤ cle 8081 − cmin 8216 ℕcn 9009 ℤcz 9345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-addass 8000 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-0id 8006 ax-rnegex 8007 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-ltadd 8014 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-inn 9010 df-n0 9269 df-z 9346 |
| This theorem is referenced by: zleltp1 9400 zlem1lt 9401 zgt0ge1 9403 nnltp1le 9405 nn0ltp1le 9407 btwnnz 9439 uzind2 9457 fzind 9460 btwnapz 9475 eluzp1l 9645 eluz2b1 9694 zltaddlt1le 10101 fzsplit2 10144 zsupcllemstep 10338 infssuzex 10342 suprzubdc 10345 m1modge3gt1 10482 seq3f1olemqsumkj 10622 seq3f1olemqsumk 10623 bcval5 10874 seq3coll 10953 cvgratnnlemseq 11710 nn0o1gt2 12089 divalglemnqt 12104 isprm3 12313 dvdsnprmd 12320 prmgt1 12327 oddprmge3 12330 znege1 12373 hashdvds 12416 lgsdilem2 15385 lgsquadlem1 15426 2lgslem1a 15437 |
| Copyright terms: Public domain | W3C validator |