Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zltp1le | GIF version |
Description: Integer ordering relation. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
zltp1le | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnge1 8913 | . . . 4 ⊢ ((𝑁 − 𝑀) ∈ ℕ → 1 ≤ (𝑁 − 𝑀)) | |
2 | 1 | a1i 9 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 − 𝑀) ∈ ℕ → 1 ≤ (𝑁 − 𝑀))) |
3 | znnsub 9275 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ)) | |
4 | zre 9228 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
5 | zre 9228 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
6 | 1re 7931 | . . . . 5 ⊢ 1 ∈ ℝ | |
7 | leaddsub2 8370 | . . . . 5 ⊢ ((𝑀 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 1) ≤ 𝑁 ↔ 1 ≤ (𝑁 − 𝑀))) | |
8 | 6, 7 | mp3an2 1325 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 1) ≤ 𝑁 ↔ 1 ≤ (𝑁 − 𝑀))) |
9 | 4, 5, 8 | syl2an 289 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑁 ↔ 1 ≤ (𝑁 − 𝑀))) |
10 | 2, 3, 9 | 3imtr4d 203 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 → (𝑀 + 1) ≤ 𝑁)) |
11 | 4 | adantr 276 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ) |
12 | 11 | ltp1d 8858 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 < (𝑀 + 1)) |
13 | peano2re 8067 | . . . . 5 ⊢ (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ) | |
14 | 11, 13 | syl 14 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 1) ∈ ℝ) |
15 | 5 | adantl 277 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ) |
16 | ltletr 8021 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ (𝑀 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 < (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁) → 𝑀 < 𝑁)) | |
17 | 11, 14, 15, 16 | syl3anc 1238 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 < (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁) → 𝑀 < 𝑁)) |
18 | 12, 17 | mpand 429 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑁 → 𝑀 < 𝑁)) |
19 | 10, 18 | impbid 129 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2146 class class class wbr 3998 (class class class)co 5865 ℝcr 7785 1c1 7787 + caddc 7789 < clt 7966 ≤ cle 7967 − cmin 8102 ℕcn 8890 ℤcz 9224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-inn 8891 df-n0 9148 df-z 9225 |
This theorem is referenced by: zleltp1 9279 zlem1lt 9280 zgt0ge1 9282 nnltp1le 9284 nn0ltp1le 9286 btwnnz 9318 uzind2 9336 fzind 9339 btwnapz 9354 eluzp1l 9523 eluz2b1 9572 zltaddlt1le 9976 fzsplit2 10018 m1modge3gt1 10339 seq3f1olemqsumkj 10466 seq3f1olemqsumk 10467 bcval5 10709 seq3coll 10789 cvgratnnlemseq 11501 nn0o1gt2 11876 divalglemnqt 11891 zsupcllemstep 11912 infssuzex 11916 suprzubdc 11919 isprm3 12084 dvdsnprmd 12091 prmgt1 12098 oddprmge3 12101 znege1 12144 hashdvds 12187 lgsdilem2 13930 |
Copyright terms: Public domain | W3C validator |