ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzss GIF version

Theorem uzss 9546
Description: Subset relationship for two sets of upper integers. (Contributed by NM, 5-Sep-2005.)
Assertion
Ref Expression
uzss (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))

Proof of Theorem uzss
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eluzle 9538 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
21adantr 276 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → 𝑀𝑁)
3 eluzel2 9531 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
4 eluzelz 9535 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
53, 4jca 306 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
6 zletr 9300 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑀𝑁𝑁𝑘) → 𝑀𝑘))
763expa 1203 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑀𝑁𝑁𝑘) → 𝑀𝑘))
85, 7sylan 283 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑀𝑁𝑁𝑘) → 𝑀𝑘))
92, 8mpand 429 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑁𝑘𝑀𝑘))
109imdistanda 448 . . 3 (𝑁 ∈ (ℤ𝑀) → ((𝑘 ∈ ℤ ∧ 𝑁𝑘) → (𝑘 ∈ ℤ ∧ 𝑀𝑘)))
11 eluz1 9530 . . . 4 (𝑁 ∈ ℤ → (𝑘 ∈ (ℤ𝑁) ↔ (𝑘 ∈ ℤ ∧ 𝑁𝑘)))
124, 11syl 14 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑘 ∈ (ℤ𝑁) ↔ (𝑘 ∈ ℤ ∧ 𝑁𝑘)))
13 eluz1 9530 . . . 4 (𝑀 ∈ ℤ → (𝑘 ∈ (ℤ𝑀) ↔ (𝑘 ∈ ℤ ∧ 𝑀𝑘)))
143, 13syl 14 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑘 ∈ (ℤ𝑀) ↔ (𝑘 ∈ ℤ ∧ 𝑀𝑘)))
1510, 12, 143imtr4d 203 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑘 ∈ (ℤ𝑁) → 𝑘 ∈ (ℤ𝑀)))
1615ssrdv 3161 1 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2148  wss 3129   class class class wbr 4003  cfv 5216  cle 7991  cz 9251  cuz 9526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-pre-ltwlin 7923
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-fv 5224  df-ov 5877  df-pnf 7992  df-mnf 7993  df-xr 7994  df-ltxr 7995  df-le 7996  df-neg 8129  df-z 9252  df-uz 9527
This theorem is referenced by:  uzin  9558  uznnssnn  9575  fzopth  10058  4fvwrd4  10137  fzouzsplit  10176  seq3feq2  10467  seq3split  10476  cau3lem  11118  isumsplit  11494  isumrpcl  11497  clim2prod  11542  isprm3  12112  pcfac  12342
  Copyright terms: Public domain W3C validator