Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uzss | GIF version |
Description: Subset relationship for two sets of upper integers. (Contributed by NM, 5-Sep-2005.) |
Ref | Expression |
---|---|
uzss | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzle 9478 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) | |
2 | 1 | adantr 274 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ ℤ) → 𝑀 ≤ 𝑁) |
3 | eluzel2 9471 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
4 | eluzelz 9475 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
5 | 3, 4 | jca 304 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
6 | zletr 9240 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑘) → 𝑀 ≤ 𝑘)) | |
7 | 6 | 3expa 1193 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑘) → 𝑀 ≤ 𝑘)) |
8 | 5, 7 | sylan 281 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑘) → 𝑀 ≤ 𝑘)) |
9 | 2, 8 | mpand 426 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ ℤ) → (𝑁 ≤ 𝑘 → 𝑀 ≤ 𝑘)) |
10 | 9 | imdistanda 445 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘) → (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘))) |
11 | eluz1 9470 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑘 ∈ (ℤ≥‘𝑁) ↔ (𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘))) | |
12 | 4, 11 | syl 14 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (ℤ≥‘𝑁) ↔ (𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘))) |
13 | eluz1 9470 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑘 ∈ (ℤ≥‘𝑀) ↔ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘))) | |
14 | 3, 13 | syl 14 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (ℤ≥‘𝑀) ↔ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘))) |
15 | 10, 12, 14 | 3imtr4d 202 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (ℤ≥‘𝑁) → 𝑘 ∈ (ℤ≥‘𝑀))) |
16 | 15 | ssrdv 3148 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2136 ⊆ wss 3116 class class class wbr 3982 ‘cfv 5188 ≤ cle 7934 ℤcz 9191 ℤ≥cuz 9466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-pre-ltwlin 7866 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-neg 8072 df-z 9192 df-uz 9467 |
This theorem is referenced by: uzin 9498 uznnssnn 9515 fzopth 9996 4fvwrd4 10075 fzouzsplit 10114 seq3feq2 10405 seq3split 10414 cau3lem 11056 isumsplit 11432 isumrpcl 11435 clim2prod 11480 isprm3 12050 pcfac 12280 |
Copyright terms: Public domain | W3C validator |