ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemmn GIF version

Theorem cvgratnnlemmn 11326
Description: Lemma for cvgratnn 11332. (Contributed by Jim Kingdon, 15-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3 (𝜑𝐴 ∈ ℝ)
cvgratnn.4 (𝜑𝐴 < 1)
cvgratnn.gt0 (𝜑 → 0 < 𝐴)
cvgratnn.6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
cvgratnn.7 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
cvgratnn.m (𝜑𝑀 ∈ ℕ)
cvgratnn.n (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
cvgratnnlemmn (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑁𝑀))))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘   𝑘,𝑀

Proof of Theorem cvgratnnlemmn
Dummy variables 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvgratnn.n . 2 (𝜑𝑁 ∈ (ℤ𝑀))
2 2fveq3 5434 . . . . 5 (𝑤 = 𝑀 → (abs‘(𝐹𝑤)) = (abs‘(𝐹𝑀)))
3 oveq1 5789 . . . . . . 7 (𝑤 = 𝑀 → (𝑤𝑀) = (𝑀𝑀))
43oveq2d 5798 . . . . . 6 (𝑤 = 𝑀 → (𝐴↑(𝑤𝑀)) = (𝐴↑(𝑀𝑀)))
54oveq2d 5798 . . . . 5 (𝑤 = 𝑀 → ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) = ((abs‘(𝐹𝑀)) · (𝐴↑(𝑀𝑀))))
62, 5breq12d 3950 . . . 4 (𝑤 = 𝑀 → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) ↔ (abs‘(𝐹𝑀)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑀𝑀)))))
76imbi2d 229 . . 3 (𝑤 = 𝑀 → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀)))) ↔ (𝜑 → (abs‘(𝐹𝑀)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑀𝑀))))))
8 2fveq3 5434 . . . . 5 (𝑤 = 𝑘 → (abs‘(𝐹𝑤)) = (abs‘(𝐹𝑘)))
9 oveq1 5789 . . . . . . 7 (𝑤 = 𝑘 → (𝑤𝑀) = (𝑘𝑀))
109oveq2d 5798 . . . . . 6 (𝑤 = 𝑘 → (𝐴↑(𝑤𝑀)) = (𝐴↑(𝑘𝑀)))
1110oveq2d 5798 . . . . 5 (𝑤 = 𝑘 → ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) = ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))))
128, 11breq12d 3950 . . . 4 (𝑤 = 𝑘 → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) ↔ (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀)))))
1312imbi2d 229 . . 3 (𝑤 = 𝑘 → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀)))) ↔ (𝜑 → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))))))
14 2fveq3 5434 . . . . 5 (𝑤 = (𝑘 + 1) → (abs‘(𝐹𝑤)) = (abs‘(𝐹‘(𝑘 + 1))))
15 oveq1 5789 . . . . . . 7 (𝑤 = (𝑘 + 1) → (𝑤𝑀) = ((𝑘 + 1) − 𝑀))
1615oveq2d 5798 . . . . . 6 (𝑤 = (𝑘 + 1) → (𝐴↑(𝑤𝑀)) = (𝐴↑((𝑘 + 1) − 𝑀)))
1716oveq2d 5798 . . . . 5 (𝑤 = (𝑘 + 1) → ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) = ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))))
1814, 17breq12d 3950 . . . 4 (𝑤 = (𝑘 + 1) → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) ↔ (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))))
1918imbi2d 229 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀)))) ↔ (𝜑 → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))))))
20 2fveq3 5434 . . . . 5 (𝑤 = 𝑁 → (abs‘(𝐹𝑤)) = (abs‘(𝐹𝑁)))
21 oveq1 5789 . . . . . . 7 (𝑤 = 𝑁 → (𝑤𝑀) = (𝑁𝑀))
2221oveq2d 5798 . . . . . 6 (𝑤 = 𝑁 → (𝐴↑(𝑤𝑀)) = (𝐴↑(𝑁𝑀)))
2322oveq2d 5798 . . . . 5 (𝑤 = 𝑁 → ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) = ((abs‘(𝐹𝑀)) · (𝐴↑(𝑁𝑀))))
2420, 23breq12d 3950 . . . 4 (𝑤 = 𝑁 → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) ↔ (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑁𝑀)))))
2524imbi2d 229 . . 3 (𝑤 = 𝑁 → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀)))) ↔ (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑁𝑀))))))
26 fveq2 5429 . . . . . . . . 9 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
2726eleq1d 2209 . . . . . . . 8 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑀) ∈ ℂ))
28 cvgratnn.6 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
2928ralrimiva 2508 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
30 cvgratnn.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
3127, 29, 30rspcdva 2798 . . . . . . 7 (𝜑 → (𝐹𝑀) ∈ ℂ)
3231abscld 10985 . . . . . 6 (𝜑 → (abs‘(𝐹𝑀)) ∈ ℝ)
3332leidd 8300 . . . . 5 (𝜑 → (abs‘(𝐹𝑀)) ≤ (abs‘(𝐹𝑀)))
3430nncnd 8758 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
3534subidd 8085 . . . . . . . . 9 (𝜑 → (𝑀𝑀) = 0)
3635oveq2d 5798 . . . . . . . 8 (𝜑 → (𝐴↑(𝑀𝑀)) = (𝐴↑0))
37 cvgratnn.3 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
3837recnd 7818 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
3938exp0d 10449 . . . . . . . 8 (𝜑 → (𝐴↑0) = 1)
4036, 39eqtrd 2173 . . . . . . 7 (𝜑 → (𝐴↑(𝑀𝑀)) = 1)
4140oveq2d 5798 . . . . . 6 (𝜑 → ((abs‘(𝐹𝑀)) · (𝐴↑(𝑀𝑀))) = ((abs‘(𝐹𝑀)) · 1))
4232recnd 7818 . . . . . . 7 (𝜑 → (abs‘(𝐹𝑀)) ∈ ℂ)
4342mulid1d 7807 . . . . . 6 (𝜑 → ((abs‘(𝐹𝑀)) · 1) = (abs‘(𝐹𝑀)))
4441, 43eqtrd 2173 . . . . 5 (𝜑 → ((abs‘(𝐹𝑀)) · (𝐴↑(𝑀𝑀))) = (abs‘(𝐹𝑀)))
4533, 44breqtrrd 3964 . . . 4 (𝜑 → (abs‘(𝐹𝑀)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑀𝑀))))
4645a1i 9 . . 3 (𝑀 ∈ ℤ → (𝜑 → (abs‘(𝐹𝑀)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑀𝑀)))))
47 eluznn 9421 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ)
4830, 47sylan 281 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ)
4948, 28syldan 280 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
5049abscld 10985 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) ∈ ℝ)
5132adantr 274 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑀)) ∈ ℝ)
5237adantr 274 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝐴 ∈ ℝ)
53 uznn0sub 9381 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑀) → (𝑘𝑀) ∈ ℕ0)
5453adantl 275 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝑘𝑀) ∈ ℕ0)
5552, 54reexpcld 10472 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴↑(𝑘𝑀)) ∈ ℝ)
5651, 55remulcld 7820 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) ∈ ℝ)
57 0red 7791 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → 0 ∈ ℝ)
58 cvgratnn.gt0 . . . . . . . . . 10 (𝜑 → 0 < 𝐴)
5958adantr 274 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → 0 < 𝐴)
6057, 52, 59ltled 7905 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → 0 ≤ 𝐴)
61 lemul2a 8641 . . . . . . . . 9 ((((abs‘(𝐹𝑘)) ∈ ℝ ∧ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀)))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀)))))
6261ex 114 . . . . . . . 8 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))))))
6350, 56, 52, 60, 62syl112anc 1221 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))))))
6438adantr 274 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
6542adantr 274 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑀)) ∈ ℂ)
6655recnd 7818 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴↑(𝑘𝑀)) ∈ ℂ)
6764, 65, 66mul12d 7938 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴 · ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀)))) = ((abs‘(𝐹𝑀)) · (𝐴 · (𝐴↑(𝑘𝑀)))))
6864, 54expp1d 10456 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴↑((𝑘𝑀) + 1)) = ((𝐴↑(𝑘𝑀)) · 𝐴))
6948nncnd 8758 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℂ)
70 1cnd 7806 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑀)) → 1 ∈ ℂ)
71 eluzel2 9355 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
7271adantl 275 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑀 ∈ ℤ)
7372zcnd 9198 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑀 ∈ ℂ)
7469, 70, 73addsubd 8118 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑘 + 1) − 𝑀) = ((𝑘𝑀) + 1))
7574oveq2d 5798 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴↑((𝑘 + 1) − 𝑀)) = (𝐴↑((𝑘𝑀) + 1)))
7664, 66mulcomd 7811 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴 · (𝐴↑(𝑘𝑀))) = ((𝐴↑(𝑘𝑀)) · 𝐴))
7768, 75, 763eqtr4rd 2184 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴 · (𝐴↑(𝑘𝑀))) = (𝐴↑((𝑘 + 1) − 𝑀)))
7877oveq2d 5798 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑀)) · (𝐴 · (𝐴↑(𝑘𝑀)))) = ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))))
7967, 78eqtrd 2173 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴 · ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀)))) = ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))))
8079breq2d 3949 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀)))) ↔ (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))))
8163, 80sylibd 148 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))))
82 cvgratnn.7 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
8348, 82syldan 280 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
84 fveq2 5429 . . . . . . . . . . 11 (𝑛 = (𝑘 + 1) → (𝐹𝑛) = (𝐹‘(𝑘 + 1)))
8584eleq1d 2209 . . . . . . . . . 10 (𝑛 = (𝑘 + 1) → ((𝐹𝑛) ∈ ℂ ↔ (𝐹‘(𝑘 + 1)) ∈ ℂ))
86 fveq2 5429 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
8786eleq1d 2209 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑛) ∈ ℂ))
8887cbvralv 2657 . . . . . . . . . . . 12 (∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ ↔ ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ℂ)
8929, 88sylib 121 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ℂ)
9089adantr 274 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ℂ)
9148peano2nnd 8759 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝑘 + 1) ∈ ℕ)
9285, 90, 91rspcdva 2798 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
9392abscld 10985 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ)
9452, 50remulcld 7820 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴 · (abs‘(𝐹𝑘))) ∈ ℝ)
95 peano2uz 9405 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ𝑀) → (𝑘 + 1) ∈ (ℤ𝑀))
9695adantl 275 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝑘 + 1) ∈ (ℤ𝑀))
97 uznn0sub 9381 . . . . . . . . . . 11 ((𝑘 + 1) ∈ (ℤ𝑀) → ((𝑘 + 1) − 𝑀) ∈ ℕ0)
9896, 97syl 14 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑘 + 1) − 𝑀) ∈ ℕ0)
9952, 98reexpcld 10472 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴↑((𝑘 + 1) − 𝑀)) ∈ ℝ)
10051, 99remulcld 7820 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))) ∈ ℝ)
101 letr 7871 . . . . . . . 8 (((abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ ∧ (𝐴 · (abs‘(𝐹𝑘))) ∈ ℝ ∧ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))) ∈ ℝ) → (((abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))) ∧ (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))))
10293, 94, 100, 101syl3anc 1217 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (((abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))) ∧ (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))))
10383, 102mpand 426 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))))
10481, 103syld 45 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))))
105104expcom 115 . . . 4 (𝑘 ∈ (ℤ𝑀) → (𝜑 → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))))))
106105a2d 26 . . 3 (𝑘 ∈ (ℤ𝑀) → ((𝜑 → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀)))) → (𝜑 → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))))))
1077, 13, 19, 25, 46, 106uzind4 9410 . 2 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑁𝑀)))))
1081, 107mpcom 36 1 (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑁𝑀))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 963   = wceq 1332  wcel 1481  wral 2417   class class class wbr 3937  cfv 5131  (class class class)co 5782  cc 7642  cr 7643  0cc0 7644  1c1 7645   + caddc 7647   · cmul 7649   < clt 7824  cle 7825  cmin 7957  cn 8744  0cn0 9001  cz 9078  cuz 9350  cexp 10323  abscabs 10801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-rp 9471  df-seqfrec 10250  df-exp 10324  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803
This theorem is referenced by:  cvgratnnlemabsle  11328
  Copyright terms: Public domain W3C validator