ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemmn GIF version

Theorem cvgratnnlemmn 11517
Description: Lemma for cvgratnn 11523. (Contributed by Jim Kingdon, 15-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3 (𝜑𝐴 ∈ ℝ)
cvgratnn.4 (𝜑𝐴 < 1)
cvgratnn.gt0 (𝜑 → 0 < 𝐴)
cvgratnn.6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
cvgratnn.7 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
cvgratnn.m (𝜑𝑀 ∈ ℕ)
cvgratnn.n (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
cvgratnnlemmn (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑁𝑀))))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘   𝑘,𝑀

Proof of Theorem cvgratnnlemmn
Dummy variables 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvgratnn.n . 2 (𝜑𝑁 ∈ (ℤ𝑀))
2 2fveq3 5516 . . . . 5 (𝑤 = 𝑀 → (abs‘(𝐹𝑤)) = (abs‘(𝐹𝑀)))
3 oveq1 5876 . . . . . . 7 (𝑤 = 𝑀 → (𝑤𝑀) = (𝑀𝑀))
43oveq2d 5885 . . . . . 6 (𝑤 = 𝑀 → (𝐴↑(𝑤𝑀)) = (𝐴↑(𝑀𝑀)))
54oveq2d 5885 . . . . 5 (𝑤 = 𝑀 → ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) = ((abs‘(𝐹𝑀)) · (𝐴↑(𝑀𝑀))))
62, 5breq12d 4013 . . . 4 (𝑤 = 𝑀 → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) ↔ (abs‘(𝐹𝑀)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑀𝑀)))))
76imbi2d 230 . . 3 (𝑤 = 𝑀 → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀)))) ↔ (𝜑 → (abs‘(𝐹𝑀)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑀𝑀))))))
8 2fveq3 5516 . . . . 5 (𝑤 = 𝑘 → (abs‘(𝐹𝑤)) = (abs‘(𝐹𝑘)))
9 oveq1 5876 . . . . . . 7 (𝑤 = 𝑘 → (𝑤𝑀) = (𝑘𝑀))
109oveq2d 5885 . . . . . 6 (𝑤 = 𝑘 → (𝐴↑(𝑤𝑀)) = (𝐴↑(𝑘𝑀)))
1110oveq2d 5885 . . . . 5 (𝑤 = 𝑘 → ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) = ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))))
128, 11breq12d 4013 . . . 4 (𝑤 = 𝑘 → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) ↔ (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀)))))
1312imbi2d 230 . . 3 (𝑤 = 𝑘 → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀)))) ↔ (𝜑 → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))))))
14 2fveq3 5516 . . . . 5 (𝑤 = (𝑘 + 1) → (abs‘(𝐹𝑤)) = (abs‘(𝐹‘(𝑘 + 1))))
15 oveq1 5876 . . . . . . 7 (𝑤 = (𝑘 + 1) → (𝑤𝑀) = ((𝑘 + 1) − 𝑀))
1615oveq2d 5885 . . . . . 6 (𝑤 = (𝑘 + 1) → (𝐴↑(𝑤𝑀)) = (𝐴↑((𝑘 + 1) − 𝑀)))
1716oveq2d 5885 . . . . 5 (𝑤 = (𝑘 + 1) → ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) = ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))))
1814, 17breq12d 4013 . . . 4 (𝑤 = (𝑘 + 1) → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) ↔ (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))))
1918imbi2d 230 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀)))) ↔ (𝜑 → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))))))
20 2fveq3 5516 . . . . 5 (𝑤 = 𝑁 → (abs‘(𝐹𝑤)) = (abs‘(𝐹𝑁)))
21 oveq1 5876 . . . . . . 7 (𝑤 = 𝑁 → (𝑤𝑀) = (𝑁𝑀))
2221oveq2d 5885 . . . . . 6 (𝑤 = 𝑁 → (𝐴↑(𝑤𝑀)) = (𝐴↑(𝑁𝑀)))
2322oveq2d 5885 . . . . 5 (𝑤 = 𝑁 → ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) = ((abs‘(𝐹𝑀)) · (𝐴↑(𝑁𝑀))))
2420, 23breq12d 4013 . . . 4 (𝑤 = 𝑁 → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) ↔ (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑁𝑀)))))
2524imbi2d 230 . . 3 (𝑤 = 𝑁 → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀)))) ↔ (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑁𝑀))))))
26 fveq2 5511 . . . . . . . . 9 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
2726eleq1d 2246 . . . . . . . 8 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑀) ∈ ℂ))
28 cvgratnn.6 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
2928ralrimiva 2550 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
30 cvgratnn.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
3127, 29, 30rspcdva 2846 . . . . . . 7 (𝜑 → (𝐹𝑀) ∈ ℂ)
3231abscld 11174 . . . . . 6 (𝜑 → (abs‘(𝐹𝑀)) ∈ ℝ)
3332leidd 8461 . . . . 5 (𝜑 → (abs‘(𝐹𝑀)) ≤ (abs‘(𝐹𝑀)))
3430nncnd 8922 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
3534subidd 8246 . . . . . . . . 9 (𝜑 → (𝑀𝑀) = 0)
3635oveq2d 5885 . . . . . . . 8 (𝜑 → (𝐴↑(𝑀𝑀)) = (𝐴↑0))
37 cvgratnn.3 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
3837recnd 7976 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
3938exp0d 10633 . . . . . . . 8 (𝜑 → (𝐴↑0) = 1)
4036, 39eqtrd 2210 . . . . . . 7 (𝜑 → (𝐴↑(𝑀𝑀)) = 1)
4140oveq2d 5885 . . . . . 6 (𝜑 → ((abs‘(𝐹𝑀)) · (𝐴↑(𝑀𝑀))) = ((abs‘(𝐹𝑀)) · 1))
4232recnd 7976 . . . . . . 7 (𝜑 → (abs‘(𝐹𝑀)) ∈ ℂ)
4342mulid1d 7965 . . . . . 6 (𝜑 → ((abs‘(𝐹𝑀)) · 1) = (abs‘(𝐹𝑀)))
4441, 43eqtrd 2210 . . . . 5 (𝜑 → ((abs‘(𝐹𝑀)) · (𝐴↑(𝑀𝑀))) = (abs‘(𝐹𝑀)))
4533, 44breqtrrd 4028 . . . 4 (𝜑 → (abs‘(𝐹𝑀)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑀𝑀))))
4645a1i 9 . . 3 (𝑀 ∈ ℤ → (𝜑 → (abs‘(𝐹𝑀)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑀𝑀)))))
47 eluznn 9589 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ)
4830, 47sylan 283 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ)
4948, 28syldan 282 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
5049abscld 11174 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) ∈ ℝ)
5132adantr 276 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑀)) ∈ ℝ)
5237adantr 276 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝐴 ∈ ℝ)
53 uznn0sub 9548 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑀) → (𝑘𝑀) ∈ ℕ0)
5453adantl 277 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝑘𝑀) ∈ ℕ0)
5552, 54reexpcld 10656 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴↑(𝑘𝑀)) ∈ ℝ)
5651, 55remulcld 7978 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) ∈ ℝ)
57 0red 7949 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → 0 ∈ ℝ)
58 cvgratnn.gt0 . . . . . . . . . 10 (𝜑 → 0 < 𝐴)
5958adantr 276 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → 0 < 𝐴)
6057, 52, 59ltled 8066 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → 0 ≤ 𝐴)
61 lemul2a 8805 . . . . . . . . 9 ((((abs‘(𝐹𝑘)) ∈ ℝ ∧ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀)))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀)))))
6261ex 115 . . . . . . . 8 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))))))
6350, 56, 52, 60, 62syl112anc 1242 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))))))
6438adantr 276 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
6542adantr 276 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑀)) ∈ ℂ)
6655recnd 7976 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴↑(𝑘𝑀)) ∈ ℂ)
6764, 65, 66mul12d 8099 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴 · ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀)))) = ((abs‘(𝐹𝑀)) · (𝐴 · (𝐴↑(𝑘𝑀)))))
6864, 54expp1d 10640 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴↑((𝑘𝑀) + 1)) = ((𝐴↑(𝑘𝑀)) · 𝐴))
6948nncnd 8922 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℂ)
70 1cnd 7964 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑀)) → 1 ∈ ℂ)
71 eluzel2 9522 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
7271adantl 277 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑀 ∈ ℤ)
7372zcnd 9365 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑀 ∈ ℂ)
7469, 70, 73addsubd 8279 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑘 + 1) − 𝑀) = ((𝑘𝑀) + 1))
7574oveq2d 5885 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴↑((𝑘 + 1) − 𝑀)) = (𝐴↑((𝑘𝑀) + 1)))
7664, 66mulcomd 7969 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴 · (𝐴↑(𝑘𝑀))) = ((𝐴↑(𝑘𝑀)) · 𝐴))
7768, 75, 763eqtr4rd 2221 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴 · (𝐴↑(𝑘𝑀))) = (𝐴↑((𝑘 + 1) − 𝑀)))
7877oveq2d 5885 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑀)) · (𝐴 · (𝐴↑(𝑘𝑀)))) = ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))))
7967, 78eqtrd 2210 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴 · ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀)))) = ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))))
8079breq2d 4012 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀)))) ↔ (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))))
8163, 80sylibd 149 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))))
82 cvgratnn.7 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
8348, 82syldan 282 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
84 fveq2 5511 . . . . . . . . . . 11 (𝑛 = (𝑘 + 1) → (𝐹𝑛) = (𝐹‘(𝑘 + 1)))
8584eleq1d 2246 . . . . . . . . . 10 (𝑛 = (𝑘 + 1) → ((𝐹𝑛) ∈ ℂ ↔ (𝐹‘(𝑘 + 1)) ∈ ℂ))
86 fveq2 5511 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
8786eleq1d 2246 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑛) ∈ ℂ))
8887cbvralv 2703 . . . . . . . . . . . 12 (∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ ↔ ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ℂ)
8929, 88sylib 122 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ℂ)
9089adantr 276 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ℂ)
9148peano2nnd 8923 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝑘 + 1) ∈ ℕ)
9285, 90, 91rspcdva 2846 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
9392abscld 11174 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ)
9452, 50remulcld 7978 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴 · (abs‘(𝐹𝑘))) ∈ ℝ)
95 peano2uz 9572 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ𝑀) → (𝑘 + 1) ∈ (ℤ𝑀))
9695adantl 277 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝑘 + 1) ∈ (ℤ𝑀))
97 uznn0sub 9548 . . . . . . . . . . 11 ((𝑘 + 1) ∈ (ℤ𝑀) → ((𝑘 + 1) − 𝑀) ∈ ℕ0)
9896, 97syl 14 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑘 + 1) − 𝑀) ∈ ℕ0)
9952, 98reexpcld 10656 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴↑((𝑘 + 1) − 𝑀)) ∈ ℝ)
10051, 99remulcld 7978 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))) ∈ ℝ)
101 letr 8030 . . . . . . . 8 (((abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ ∧ (𝐴 · (abs‘(𝐹𝑘))) ∈ ℝ ∧ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))) ∈ ℝ) → (((abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))) ∧ (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))))
10293, 94, 100, 101syl3anc 1238 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (((abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))) ∧ (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))))
10383, 102mpand 429 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))))
10481, 103syld 45 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))))
105104expcom 116 . . . 4 (𝑘 ∈ (ℤ𝑀) → (𝜑 → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))))))
106105a2d 26 . . 3 (𝑘 ∈ (ℤ𝑀) → ((𝜑 → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀)))) → (𝜑 → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))))))
1077, 13, 19, 25, 46, 106uzind4 9577 . 2 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑁𝑀)))))
1081, 107mpcom 36 1 (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑁𝑀))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2148  wral 2455   class class class wbr 4000  cfv 5212  (class class class)co 5869  cc 7800  cr 7801  0cc0 7802  1c1 7803   + caddc 7805   · cmul 7807   < clt 7982  cle 7983  cmin 8118  cn 8908  0cn0 9165  cz 9242  cuz 9517  cexp 10505  abscabs 10990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-rp 9641  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992
This theorem is referenced by:  cvgratnnlemabsle  11519
  Copyright terms: Public domain W3C validator