ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemmn GIF version

Theorem cvgratnnlemmn 11433
Description: Lemma for cvgratnn 11439. (Contributed by Jim Kingdon, 15-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3 (𝜑𝐴 ∈ ℝ)
cvgratnn.4 (𝜑𝐴 < 1)
cvgratnn.gt0 (𝜑 → 0 < 𝐴)
cvgratnn.6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
cvgratnn.7 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
cvgratnn.m (𝜑𝑀 ∈ ℕ)
cvgratnn.n (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
cvgratnnlemmn (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑁𝑀))))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘   𝑘,𝑀

Proof of Theorem cvgratnnlemmn
Dummy variables 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvgratnn.n . 2 (𝜑𝑁 ∈ (ℤ𝑀))
2 2fveq3 5475 . . . . 5 (𝑤 = 𝑀 → (abs‘(𝐹𝑤)) = (abs‘(𝐹𝑀)))
3 oveq1 5833 . . . . . . 7 (𝑤 = 𝑀 → (𝑤𝑀) = (𝑀𝑀))
43oveq2d 5842 . . . . . 6 (𝑤 = 𝑀 → (𝐴↑(𝑤𝑀)) = (𝐴↑(𝑀𝑀)))
54oveq2d 5842 . . . . 5 (𝑤 = 𝑀 → ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) = ((abs‘(𝐹𝑀)) · (𝐴↑(𝑀𝑀))))
62, 5breq12d 3980 . . . 4 (𝑤 = 𝑀 → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) ↔ (abs‘(𝐹𝑀)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑀𝑀)))))
76imbi2d 229 . . 3 (𝑤 = 𝑀 → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀)))) ↔ (𝜑 → (abs‘(𝐹𝑀)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑀𝑀))))))
8 2fveq3 5475 . . . . 5 (𝑤 = 𝑘 → (abs‘(𝐹𝑤)) = (abs‘(𝐹𝑘)))
9 oveq1 5833 . . . . . . 7 (𝑤 = 𝑘 → (𝑤𝑀) = (𝑘𝑀))
109oveq2d 5842 . . . . . 6 (𝑤 = 𝑘 → (𝐴↑(𝑤𝑀)) = (𝐴↑(𝑘𝑀)))
1110oveq2d 5842 . . . . 5 (𝑤 = 𝑘 → ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) = ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))))
128, 11breq12d 3980 . . . 4 (𝑤 = 𝑘 → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) ↔ (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀)))))
1312imbi2d 229 . . 3 (𝑤 = 𝑘 → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀)))) ↔ (𝜑 → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))))))
14 2fveq3 5475 . . . . 5 (𝑤 = (𝑘 + 1) → (abs‘(𝐹𝑤)) = (abs‘(𝐹‘(𝑘 + 1))))
15 oveq1 5833 . . . . . . 7 (𝑤 = (𝑘 + 1) → (𝑤𝑀) = ((𝑘 + 1) − 𝑀))
1615oveq2d 5842 . . . . . 6 (𝑤 = (𝑘 + 1) → (𝐴↑(𝑤𝑀)) = (𝐴↑((𝑘 + 1) − 𝑀)))
1716oveq2d 5842 . . . . 5 (𝑤 = (𝑘 + 1) → ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) = ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))))
1814, 17breq12d 3980 . . . 4 (𝑤 = (𝑘 + 1) → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) ↔ (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))))
1918imbi2d 229 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀)))) ↔ (𝜑 → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))))))
20 2fveq3 5475 . . . . 5 (𝑤 = 𝑁 → (abs‘(𝐹𝑤)) = (abs‘(𝐹𝑁)))
21 oveq1 5833 . . . . . . 7 (𝑤 = 𝑁 → (𝑤𝑀) = (𝑁𝑀))
2221oveq2d 5842 . . . . . 6 (𝑤 = 𝑁 → (𝐴↑(𝑤𝑀)) = (𝐴↑(𝑁𝑀)))
2322oveq2d 5842 . . . . 5 (𝑤 = 𝑁 → ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) = ((abs‘(𝐹𝑀)) · (𝐴↑(𝑁𝑀))))
2420, 23breq12d 3980 . . . 4 (𝑤 = 𝑁 → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) ↔ (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑁𝑀)))))
2524imbi2d 229 . . 3 (𝑤 = 𝑁 → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀)))) ↔ (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑁𝑀))))))
26 fveq2 5470 . . . . . . . . 9 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
2726eleq1d 2226 . . . . . . . 8 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑀) ∈ ℂ))
28 cvgratnn.6 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
2928ralrimiva 2530 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
30 cvgratnn.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
3127, 29, 30rspcdva 2821 . . . . . . 7 (𝜑 → (𝐹𝑀) ∈ ℂ)
3231abscld 11092 . . . . . 6 (𝜑 → (abs‘(𝐹𝑀)) ∈ ℝ)
3332leidd 8393 . . . . 5 (𝜑 → (abs‘(𝐹𝑀)) ≤ (abs‘(𝐹𝑀)))
3430nncnd 8852 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
3534subidd 8178 . . . . . . . . 9 (𝜑 → (𝑀𝑀) = 0)
3635oveq2d 5842 . . . . . . . 8 (𝜑 → (𝐴↑(𝑀𝑀)) = (𝐴↑0))
37 cvgratnn.3 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
3837recnd 7908 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
3938exp0d 10554 . . . . . . . 8 (𝜑 → (𝐴↑0) = 1)
4036, 39eqtrd 2190 . . . . . . 7 (𝜑 → (𝐴↑(𝑀𝑀)) = 1)
4140oveq2d 5842 . . . . . 6 (𝜑 → ((abs‘(𝐹𝑀)) · (𝐴↑(𝑀𝑀))) = ((abs‘(𝐹𝑀)) · 1))
4232recnd 7908 . . . . . . 7 (𝜑 → (abs‘(𝐹𝑀)) ∈ ℂ)
4342mulid1d 7897 . . . . . 6 (𝜑 → ((abs‘(𝐹𝑀)) · 1) = (abs‘(𝐹𝑀)))
4441, 43eqtrd 2190 . . . . 5 (𝜑 → ((abs‘(𝐹𝑀)) · (𝐴↑(𝑀𝑀))) = (abs‘(𝐹𝑀)))
4533, 44breqtrrd 3994 . . . 4 (𝜑 → (abs‘(𝐹𝑀)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑀𝑀))))
4645a1i 9 . . 3 (𝑀 ∈ ℤ → (𝜑 → (abs‘(𝐹𝑀)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑀𝑀)))))
47 eluznn 9516 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ)
4830, 47sylan 281 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ)
4948, 28syldan 280 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
5049abscld 11092 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) ∈ ℝ)
5132adantr 274 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑀)) ∈ ℝ)
5237adantr 274 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝐴 ∈ ℝ)
53 uznn0sub 9475 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑀) → (𝑘𝑀) ∈ ℕ0)
5453adantl 275 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝑘𝑀) ∈ ℕ0)
5552, 54reexpcld 10577 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴↑(𝑘𝑀)) ∈ ℝ)
5651, 55remulcld 7910 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) ∈ ℝ)
57 0red 7881 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → 0 ∈ ℝ)
58 cvgratnn.gt0 . . . . . . . . . 10 (𝜑 → 0 < 𝐴)
5958adantr 274 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → 0 < 𝐴)
6057, 52, 59ltled 7998 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → 0 ≤ 𝐴)
61 lemul2a 8735 . . . . . . . . 9 ((((abs‘(𝐹𝑘)) ∈ ℝ ∧ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀)))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀)))))
6261ex 114 . . . . . . . 8 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))))))
6350, 56, 52, 60, 62syl112anc 1224 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))))))
6438adantr 274 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
6542adantr 274 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑀)) ∈ ℂ)
6655recnd 7908 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴↑(𝑘𝑀)) ∈ ℂ)
6764, 65, 66mul12d 8031 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴 · ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀)))) = ((abs‘(𝐹𝑀)) · (𝐴 · (𝐴↑(𝑘𝑀)))))
6864, 54expp1d 10561 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴↑((𝑘𝑀) + 1)) = ((𝐴↑(𝑘𝑀)) · 𝐴))
6948nncnd 8852 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℂ)
70 1cnd 7896 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑀)) → 1 ∈ ℂ)
71 eluzel2 9449 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
7271adantl 275 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑀 ∈ ℤ)
7372zcnd 9292 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑀 ∈ ℂ)
7469, 70, 73addsubd 8211 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑘 + 1) − 𝑀) = ((𝑘𝑀) + 1))
7574oveq2d 5842 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴↑((𝑘 + 1) − 𝑀)) = (𝐴↑((𝑘𝑀) + 1)))
7664, 66mulcomd 7901 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴 · (𝐴↑(𝑘𝑀))) = ((𝐴↑(𝑘𝑀)) · 𝐴))
7768, 75, 763eqtr4rd 2201 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴 · (𝐴↑(𝑘𝑀))) = (𝐴↑((𝑘 + 1) − 𝑀)))
7877oveq2d 5842 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑀)) · (𝐴 · (𝐴↑(𝑘𝑀)))) = ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))))
7967, 78eqtrd 2190 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴 · ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀)))) = ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))))
8079breq2d 3979 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀)))) ↔ (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))))
8163, 80sylibd 148 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))))
82 cvgratnn.7 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
8348, 82syldan 280 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
84 fveq2 5470 . . . . . . . . . . 11 (𝑛 = (𝑘 + 1) → (𝐹𝑛) = (𝐹‘(𝑘 + 1)))
8584eleq1d 2226 . . . . . . . . . 10 (𝑛 = (𝑘 + 1) → ((𝐹𝑛) ∈ ℂ ↔ (𝐹‘(𝑘 + 1)) ∈ ℂ))
86 fveq2 5470 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
8786eleq1d 2226 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑛) ∈ ℂ))
8887cbvralv 2680 . . . . . . . . . . . 12 (∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ ↔ ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ℂ)
8929, 88sylib 121 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ℂ)
9089adantr 274 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ℂ)
9148peano2nnd 8853 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝑘 + 1) ∈ ℕ)
9285, 90, 91rspcdva 2821 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
9392abscld 11092 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ)
9452, 50remulcld 7910 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴 · (abs‘(𝐹𝑘))) ∈ ℝ)
95 peano2uz 9499 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ𝑀) → (𝑘 + 1) ∈ (ℤ𝑀))
9695adantl 275 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝑘 + 1) ∈ (ℤ𝑀))
97 uznn0sub 9475 . . . . . . . . . . 11 ((𝑘 + 1) ∈ (ℤ𝑀) → ((𝑘 + 1) − 𝑀) ∈ ℕ0)
9896, 97syl 14 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑘 + 1) − 𝑀) ∈ ℕ0)
9952, 98reexpcld 10577 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴↑((𝑘 + 1) − 𝑀)) ∈ ℝ)
10051, 99remulcld 7910 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))) ∈ ℝ)
101 letr 7962 . . . . . . . 8 (((abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ ∧ (𝐴 · (abs‘(𝐹𝑘))) ∈ ℝ ∧ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))) ∈ ℝ) → (((abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))) ∧ (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))))
10293, 94, 100, 101syl3anc 1220 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (((abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))) ∧ (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))))
10383, 102mpand 426 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))))
10481, 103syld 45 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))))
105104expcom 115 . . . 4 (𝑘 ∈ (ℤ𝑀) → (𝜑 → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))))))
106105a2d 26 . . 3 (𝑘 ∈ (ℤ𝑀) → ((𝜑 → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀)))) → (𝜑 → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))))))
1077, 13, 19, 25, 46, 106uzind4 9504 . 2 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑁𝑀)))))
1081, 107mpcom 36 1 (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑁𝑀))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 963   = wceq 1335  wcel 2128  wral 2435   class class class wbr 3967  cfv 5172  (class class class)co 5826  cc 7732  cr 7733  0cc0 7734  1c1 7735   + caddc 7737   · cmul 7739   < clt 7914  cle 7915  cmin 8050  cn 8838  0cn0 9095  cz 9172  cuz 9444  cexp 10427  abscabs 10908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4081  ax-sep 4084  ax-nul 4092  ax-pow 4137  ax-pr 4171  ax-un 4395  ax-setind 4498  ax-iinf 4549  ax-cnex 7825  ax-resscn 7826  ax-1cn 7827  ax-1re 7828  ax-icn 7829  ax-addcl 7830  ax-addrcl 7831  ax-mulcl 7832  ax-mulrcl 7833  ax-addcom 7834  ax-mulcom 7835  ax-addass 7836  ax-mulass 7837  ax-distr 7838  ax-i2m1 7839  ax-0lt1 7840  ax-1rid 7841  ax-0id 7842  ax-rnegex 7843  ax-precex 7844  ax-cnre 7845  ax-pre-ltirr 7846  ax-pre-ltwlin 7847  ax-pre-lttrn 7848  ax-pre-apti 7849  ax-pre-ltadd 7850  ax-pre-mulgt0 7851  ax-pre-mulext 7852  ax-arch 7853  ax-caucvg 7854
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-if 3507  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4028  df-mpt 4029  df-tr 4065  df-id 4255  df-po 4258  df-iso 4259  df-iord 4328  df-on 4330  df-ilim 4331  df-suc 4333  df-iom 4552  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-iota 5137  df-fun 5174  df-fn 5175  df-f 5176  df-f1 5177  df-fo 5178  df-f1o 5179  df-fv 5180  df-riota 5782  df-ov 5829  df-oprab 5830  df-mpo 5831  df-1st 6090  df-2nd 6091  df-recs 6254  df-frec 6340  df-pnf 7916  df-mnf 7917  df-xr 7918  df-ltxr 7919  df-le 7920  df-sub 8052  df-neg 8053  df-reap 8454  df-ap 8461  df-div 8550  df-inn 8839  df-2 8897  df-3 8898  df-4 8899  df-n0 9096  df-z 9173  df-uz 9445  df-rp 9567  df-seqfrec 10354  df-exp 10428  df-cj 10753  df-re 10754  df-im 10755  df-rsqrt 10909  df-abs 10910
This theorem is referenced by:  cvgratnnlemabsle  11435
  Copyright terms: Public domain W3C validator