| Step | Hyp | Ref
| Expression |
| 1 | | cvgratnn.n |
. 2
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 2 | | 2fveq3 5563 |
. . . . 5
⊢ (𝑤 = 𝑀 → (abs‘(𝐹‘𝑤)) = (abs‘(𝐹‘𝑀))) |
| 3 | | oveq1 5929 |
. . . . . . 7
⊢ (𝑤 = 𝑀 → (𝑤 − 𝑀) = (𝑀 − 𝑀)) |
| 4 | 3 | oveq2d 5938 |
. . . . . 6
⊢ (𝑤 = 𝑀 → (𝐴↑(𝑤 − 𝑀)) = (𝐴↑(𝑀 − 𝑀))) |
| 5 | 4 | oveq2d 5938 |
. . . . 5
⊢ (𝑤 = 𝑀 → ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑤 − 𝑀))) = ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑀 − 𝑀)))) |
| 6 | 2, 5 | breq12d 4046 |
. . . 4
⊢ (𝑤 = 𝑀 → ((abs‘(𝐹‘𝑤)) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑤 − 𝑀))) ↔ (abs‘(𝐹‘𝑀)) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑀 − 𝑀))))) |
| 7 | 6 | imbi2d 230 |
. . 3
⊢ (𝑤 = 𝑀 → ((𝜑 → (abs‘(𝐹‘𝑤)) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑤 − 𝑀)))) ↔ (𝜑 → (abs‘(𝐹‘𝑀)) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑀 − 𝑀)))))) |
| 8 | | 2fveq3 5563 |
. . . . 5
⊢ (𝑤 = 𝑘 → (abs‘(𝐹‘𝑤)) = (abs‘(𝐹‘𝑘))) |
| 9 | | oveq1 5929 |
. . . . . . 7
⊢ (𝑤 = 𝑘 → (𝑤 − 𝑀) = (𝑘 − 𝑀)) |
| 10 | 9 | oveq2d 5938 |
. . . . . 6
⊢ (𝑤 = 𝑘 → (𝐴↑(𝑤 − 𝑀)) = (𝐴↑(𝑘 − 𝑀))) |
| 11 | 10 | oveq2d 5938 |
. . . . 5
⊢ (𝑤 = 𝑘 → ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑤 − 𝑀))) = ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑘 − 𝑀)))) |
| 12 | 8, 11 | breq12d 4046 |
. . . 4
⊢ (𝑤 = 𝑘 → ((abs‘(𝐹‘𝑤)) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑤 − 𝑀))) ↔ (abs‘(𝐹‘𝑘)) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑘 − 𝑀))))) |
| 13 | 12 | imbi2d 230 |
. . 3
⊢ (𝑤 = 𝑘 → ((𝜑 → (abs‘(𝐹‘𝑤)) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑤 − 𝑀)))) ↔ (𝜑 → (abs‘(𝐹‘𝑘)) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑘 − 𝑀)))))) |
| 14 | | 2fveq3 5563 |
. . . . 5
⊢ (𝑤 = (𝑘 + 1) → (abs‘(𝐹‘𝑤)) = (abs‘(𝐹‘(𝑘 + 1)))) |
| 15 | | oveq1 5929 |
. . . . . . 7
⊢ (𝑤 = (𝑘 + 1) → (𝑤 − 𝑀) = ((𝑘 + 1) − 𝑀)) |
| 16 | 15 | oveq2d 5938 |
. . . . . 6
⊢ (𝑤 = (𝑘 + 1) → (𝐴↑(𝑤 − 𝑀)) = (𝐴↑((𝑘 + 1) − 𝑀))) |
| 17 | 16 | oveq2d 5938 |
. . . . 5
⊢ (𝑤 = (𝑘 + 1) → ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑤 − 𝑀))) = ((abs‘(𝐹‘𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))) |
| 18 | 14, 17 | breq12d 4046 |
. . . 4
⊢ (𝑤 = (𝑘 + 1) → ((abs‘(𝐹‘𝑤)) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑤 − 𝑀))) ↔ (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))))) |
| 19 | 18 | imbi2d 230 |
. . 3
⊢ (𝑤 = (𝑘 + 1) → ((𝜑 → (abs‘(𝐹‘𝑤)) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑤 − 𝑀)))) ↔ (𝜑 → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))))) |
| 20 | | 2fveq3 5563 |
. . . . 5
⊢ (𝑤 = 𝑁 → (abs‘(𝐹‘𝑤)) = (abs‘(𝐹‘𝑁))) |
| 21 | | oveq1 5929 |
. . . . . . 7
⊢ (𝑤 = 𝑁 → (𝑤 − 𝑀) = (𝑁 − 𝑀)) |
| 22 | 21 | oveq2d 5938 |
. . . . . 6
⊢ (𝑤 = 𝑁 → (𝐴↑(𝑤 − 𝑀)) = (𝐴↑(𝑁 − 𝑀))) |
| 23 | 22 | oveq2d 5938 |
. . . . 5
⊢ (𝑤 = 𝑁 → ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑤 − 𝑀))) = ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑁 − 𝑀)))) |
| 24 | 20, 23 | breq12d 4046 |
. . . 4
⊢ (𝑤 = 𝑁 → ((abs‘(𝐹‘𝑤)) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑤 − 𝑀))) ↔ (abs‘(𝐹‘𝑁)) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑁 − 𝑀))))) |
| 25 | 24 | imbi2d 230 |
. . 3
⊢ (𝑤 = 𝑁 → ((𝜑 → (abs‘(𝐹‘𝑤)) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑤 − 𝑀)))) ↔ (𝜑 → (abs‘(𝐹‘𝑁)) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑁 − 𝑀)))))) |
| 26 | | fveq2 5558 |
. . . . . . . . 9
⊢ (𝑘 = 𝑀 → (𝐹‘𝑘) = (𝐹‘𝑀)) |
| 27 | 26 | eleq1d 2265 |
. . . . . . . 8
⊢ (𝑘 = 𝑀 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑀) ∈ ℂ)) |
| 28 | | cvgratnn.6 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) |
| 29 | 28 | ralrimiva 2570 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝐹‘𝑘) ∈ ℂ) |
| 30 | | cvgratnn.m |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 31 | 27, 29, 30 | rspcdva 2873 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝑀) ∈ ℂ) |
| 32 | 31 | abscld 11346 |
. . . . . 6
⊢ (𝜑 → (abs‘(𝐹‘𝑀)) ∈ ℝ) |
| 33 | 32 | leidd 8541 |
. . . . 5
⊢ (𝜑 → (abs‘(𝐹‘𝑀)) ≤ (abs‘(𝐹‘𝑀))) |
| 34 | 30 | nncnd 9004 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 35 | 34 | subidd 8325 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 − 𝑀) = 0) |
| 36 | 35 | oveq2d 5938 |
. . . . . . . 8
⊢ (𝜑 → (𝐴↑(𝑀 − 𝑀)) = (𝐴↑0)) |
| 37 | | cvgratnn.3 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 38 | 37 | recnd 8055 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 39 | 38 | exp0d 10759 |
. . . . . . . 8
⊢ (𝜑 → (𝐴↑0) = 1) |
| 40 | 36, 39 | eqtrd 2229 |
. . . . . . 7
⊢ (𝜑 → (𝐴↑(𝑀 − 𝑀)) = 1) |
| 41 | 40 | oveq2d 5938 |
. . . . . 6
⊢ (𝜑 → ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑀 − 𝑀))) = ((abs‘(𝐹‘𝑀)) · 1)) |
| 42 | 32 | recnd 8055 |
. . . . . . 7
⊢ (𝜑 → (abs‘(𝐹‘𝑀)) ∈ ℂ) |
| 43 | 42 | mulridd 8043 |
. . . . . 6
⊢ (𝜑 → ((abs‘(𝐹‘𝑀)) · 1) = (abs‘(𝐹‘𝑀))) |
| 44 | 41, 43 | eqtrd 2229 |
. . . . 5
⊢ (𝜑 → ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑀 − 𝑀))) = (abs‘(𝐹‘𝑀))) |
| 45 | 33, 44 | breqtrrd 4061 |
. . . 4
⊢ (𝜑 → (abs‘(𝐹‘𝑀)) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑀 − 𝑀)))) |
| 46 | 45 | a1i 9 |
. . 3
⊢ (𝑀 ∈ ℤ → (𝜑 → (abs‘(𝐹‘𝑀)) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑀 − 𝑀))))) |
| 47 | | eluznn 9674 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘𝑀)) → 𝑘 ∈ ℕ) |
| 48 | 30, 47 | sylan 283 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ ℕ) |
| 49 | 48, 28 | syldan 282 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) |
| 50 | 49 | abscld 11346 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (abs‘(𝐹‘𝑘)) ∈ ℝ) |
| 51 | 32 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (abs‘(𝐹‘𝑀)) ∈ ℝ) |
| 52 | 37 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ ℝ) |
| 53 | | uznn0sub 9633 |
. . . . . . . . . . 11
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → (𝑘 − 𝑀) ∈
ℕ0) |
| 54 | 53 | adantl 277 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 − 𝑀) ∈
ℕ0) |
| 55 | 52, 54 | reexpcld 10782 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐴↑(𝑘 − 𝑀)) ∈ ℝ) |
| 56 | 51, 55 | remulcld 8057 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑘 − 𝑀))) ∈ ℝ) |
| 57 | | 0red 8027 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 0 ∈
ℝ) |
| 58 | | cvgratnn.gt0 |
. . . . . . . . . 10
⊢ (𝜑 → 0 < 𝐴) |
| 59 | 58 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 0 < 𝐴) |
| 60 | 57, 52, 59 | ltled 8145 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 0 ≤ 𝐴) |
| 61 | | lemul2a 8886 |
. . . . . . . . 9
⊢
((((abs‘(𝐹‘𝑘)) ∈ ℝ ∧ ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑘 − 𝑀))) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (abs‘(𝐹‘𝑘)) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑘 − 𝑀)))) → (𝐴 · (abs‘(𝐹‘𝑘))) ≤ (𝐴 · ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑘 − 𝑀))))) |
| 62 | 61 | ex 115 |
. . . . . . . 8
⊢
(((abs‘(𝐹‘𝑘)) ∈ ℝ ∧ ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑘 − 𝑀))) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → ((abs‘(𝐹‘𝑘)) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑘 − 𝑀))) → (𝐴 · (abs‘(𝐹‘𝑘))) ≤ (𝐴 · ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑘 − 𝑀)))))) |
| 63 | 50, 56, 52, 60, 62 | syl112anc 1253 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((abs‘(𝐹‘𝑘)) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑘 − 𝑀))) → (𝐴 · (abs‘(𝐹‘𝑘))) ≤ (𝐴 · ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑘 − 𝑀)))))) |
| 64 | 38 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ ℂ) |
| 65 | 42 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (abs‘(𝐹‘𝑀)) ∈ ℂ) |
| 66 | 55 | recnd 8055 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐴↑(𝑘 − 𝑀)) ∈ ℂ) |
| 67 | 64, 65, 66 | mul12d 8178 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐴 · ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑘 − 𝑀)))) = ((abs‘(𝐹‘𝑀)) · (𝐴 · (𝐴↑(𝑘 − 𝑀))))) |
| 68 | 64, 54 | expp1d 10766 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐴↑((𝑘 − 𝑀) + 1)) = ((𝐴↑(𝑘 − 𝑀)) · 𝐴)) |
| 69 | 48 | nncnd 9004 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ ℂ) |
| 70 | | 1cnd 8042 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 1 ∈
ℂ) |
| 71 | | eluzel2 9606 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| 72 | 71 | adantl 277 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℤ) |
| 73 | 72 | zcnd 9449 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℂ) |
| 74 | 69, 70, 73 | addsubd 8358 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑘 + 1) − 𝑀) = ((𝑘 − 𝑀) + 1)) |
| 75 | 74 | oveq2d 5938 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐴↑((𝑘 + 1) − 𝑀)) = (𝐴↑((𝑘 − 𝑀) + 1))) |
| 76 | 64, 66 | mulcomd 8048 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐴 · (𝐴↑(𝑘 − 𝑀))) = ((𝐴↑(𝑘 − 𝑀)) · 𝐴)) |
| 77 | 68, 75, 76 | 3eqtr4rd 2240 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐴 · (𝐴↑(𝑘 − 𝑀))) = (𝐴↑((𝑘 + 1) − 𝑀))) |
| 78 | 77 | oveq2d 5938 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((abs‘(𝐹‘𝑀)) · (𝐴 · (𝐴↑(𝑘 − 𝑀)))) = ((abs‘(𝐹‘𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))) |
| 79 | 67, 78 | eqtrd 2229 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐴 · ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑘 − 𝑀)))) = ((abs‘(𝐹‘𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))) |
| 80 | 79 | breq2d 4045 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝐴 · (abs‘(𝐹‘𝑘))) ≤ (𝐴 · ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑘 − 𝑀)))) ↔ (𝐴 · (abs‘(𝐹‘𝑘))) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))))) |
| 81 | 63, 80 | sylibd 149 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((abs‘(𝐹‘𝑘)) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑘 − 𝑀))) → (𝐴 · (abs‘(𝐹‘𝑘))) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))))) |
| 82 | | cvgratnn.7 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) |
| 83 | 48, 82 | syldan 282 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) |
| 84 | | fveq2 5558 |
. . . . . . . . . . 11
⊢ (𝑛 = (𝑘 + 1) → (𝐹‘𝑛) = (𝐹‘(𝑘 + 1))) |
| 85 | 84 | eleq1d 2265 |
. . . . . . . . . 10
⊢ (𝑛 = (𝑘 + 1) → ((𝐹‘𝑛) ∈ ℂ ↔ (𝐹‘(𝑘 + 1)) ∈ ℂ)) |
| 86 | | fveq2 5558 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑛 → (𝐹‘𝑘) = (𝐹‘𝑛)) |
| 87 | 86 | eleq1d 2265 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑛 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑛) ∈ ℂ)) |
| 88 | 87 | cbvralv 2729 |
. . . . . . . . . . . 12
⊢
(∀𝑘 ∈
ℕ (𝐹‘𝑘) ∈ ℂ ↔
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ∈ ℂ) |
| 89 | 29, 88 | sylib 122 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝐹‘𝑛) ∈ ℂ) |
| 90 | 89 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ∀𝑛 ∈ ℕ (𝐹‘𝑛) ∈ ℂ) |
| 91 | 48 | peano2nnd 9005 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 + 1) ∈ ℕ) |
| 92 | 85, 90, 91 | rspcdva 2873 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘(𝑘 + 1)) ∈ ℂ) |
| 93 | 92 | abscld 11346 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ) |
| 94 | 52, 50 | remulcld 8057 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐴 · (abs‘(𝐹‘𝑘))) ∈ ℝ) |
| 95 | | peano2uz 9657 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → (𝑘 + 1) ∈
(ℤ≥‘𝑀)) |
| 96 | 95 | adantl 277 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 + 1) ∈
(ℤ≥‘𝑀)) |
| 97 | | uznn0sub 9633 |
. . . . . . . . . . 11
⊢ ((𝑘 + 1) ∈
(ℤ≥‘𝑀) → ((𝑘 + 1) − 𝑀) ∈
ℕ0) |
| 98 | 96, 97 | syl 14 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑘 + 1) − 𝑀) ∈
ℕ0) |
| 99 | 52, 98 | reexpcld 10782 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐴↑((𝑘 + 1) − 𝑀)) ∈ ℝ) |
| 100 | 51, 99 | remulcld 8057 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((abs‘(𝐹‘𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))) ∈ ℝ) |
| 101 | | letr 8109 |
. . . . . . . 8
⊢
(((abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ ∧ (𝐴 · (abs‘(𝐹‘𝑘))) ∈ ℝ ∧ ((abs‘(𝐹‘𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))) ∈ ℝ) →
(((abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘))) ∧ (𝐴 · (abs‘(𝐹‘𝑘))) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))))) |
| 102 | 93, 94, 100, 101 | syl3anc 1249 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (((abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘))) ∧ (𝐴 · (abs‘(𝐹‘𝑘))) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))))) |
| 103 | 83, 102 | mpand 429 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝐴 · (abs‘(𝐹‘𝑘))) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))))) |
| 104 | 81, 103 | syld 45 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((abs‘(𝐹‘𝑘)) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑘 − 𝑀))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))))) |
| 105 | 104 | expcom 116 |
. . . 4
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → (𝜑 → ((abs‘(𝐹‘𝑘)) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑘 − 𝑀))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))))) |
| 106 | 105 | a2d 26 |
. . 3
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → ((𝜑 → (abs‘(𝐹‘𝑘)) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑘 − 𝑀)))) → (𝜑 → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))))) |
| 107 | 7, 13, 19, 25, 46, 106 | uzind4 9662 |
. 2
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝜑 → (abs‘(𝐹‘𝑁)) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑁 − 𝑀))))) |
| 108 | 1, 107 | mpcom 36 |
1
⊢ (𝜑 → (abs‘(𝐹‘𝑁)) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑁 − 𝑀)))) |