ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemmn GIF version

Theorem cvgratnnlemmn 12031
Description: Lemma for cvgratnn 12037. (Contributed by Jim Kingdon, 15-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3 (𝜑𝐴 ∈ ℝ)
cvgratnn.4 (𝜑𝐴 < 1)
cvgratnn.gt0 (𝜑 → 0 < 𝐴)
cvgratnn.6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
cvgratnn.7 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
cvgratnn.m (𝜑𝑀 ∈ ℕ)
cvgratnn.n (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
cvgratnnlemmn (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑁𝑀))))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘   𝑘,𝑀

Proof of Theorem cvgratnnlemmn
Dummy variables 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvgratnn.n . 2 (𝜑𝑁 ∈ (ℤ𝑀))
2 2fveq3 5631 . . . . 5 (𝑤 = 𝑀 → (abs‘(𝐹𝑤)) = (abs‘(𝐹𝑀)))
3 oveq1 6007 . . . . . . 7 (𝑤 = 𝑀 → (𝑤𝑀) = (𝑀𝑀))
43oveq2d 6016 . . . . . 6 (𝑤 = 𝑀 → (𝐴↑(𝑤𝑀)) = (𝐴↑(𝑀𝑀)))
54oveq2d 6016 . . . . 5 (𝑤 = 𝑀 → ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) = ((abs‘(𝐹𝑀)) · (𝐴↑(𝑀𝑀))))
62, 5breq12d 4095 . . . 4 (𝑤 = 𝑀 → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) ↔ (abs‘(𝐹𝑀)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑀𝑀)))))
76imbi2d 230 . . 3 (𝑤 = 𝑀 → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀)))) ↔ (𝜑 → (abs‘(𝐹𝑀)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑀𝑀))))))
8 2fveq3 5631 . . . . 5 (𝑤 = 𝑘 → (abs‘(𝐹𝑤)) = (abs‘(𝐹𝑘)))
9 oveq1 6007 . . . . . . 7 (𝑤 = 𝑘 → (𝑤𝑀) = (𝑘𝑀))
109oveq2d 6016 . . . . . 6 (𝑤 = 𝑘 → (𝐴↑(𝑤𝑀)) = (𝐴↑(𝑘𝑀)))
1110oveq2d 6016 . . . . 5 (𝑤 = 𝑘 → ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) = ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))))
128, 11breq12d 4095 . . . 4 (𝑤 = 𝑘 → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) ↔ (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀)))))
1312imbi2d 230 . . 3 (𝑤 = 𝑘 → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀)))) ↔ (𝜑 → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))))))
14 2fveq3 5631 . . . . 5 (𝑤 = (𝑘 + 1) → (abs‘(𝐹𝑤)) = (abs‘(𝐹‘(𝑘 + 1))))
15 oveq1 6007 . . . . . . 7 (𝑤 = (𝑘 + 1) → (𝑤𝑀) = ((𝑘 + 1) − 𝑀))
1615oveq2d 6016 . . . . . 6 (𝑤 = (𝑘 + 1) → (𝐴↑(𝑤𝑀)) = (𝐴↑((𝑘 + 1) − 𝑀)))
1716oveq2d 6016 . . . . 5 (𝑤 = (𝑘 + 1) → ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) = ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))))
1814, 17breq12d 4095 . . . 4 (𝑤 = (𝑘 + 1) → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) ↔ (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))))
1918imbi2d 230 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀)))) ↔ (𝜑 → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))))))
20 2fveq3 5631 . . . . 5 (𝑤 = 𝑁 → (abs‘(𝐹𝑤)) = (abs‘(𝐹𝑁)))
21 oveq1 6007 . . . . . . 7 (𝑤 = 𝑁 → (𝑤𝑀) = (𝑁𝑀))
2221oveq2d 6016 . . . . . 6 (𝑤 = 𝑁 → (𝐴↑(𝑤𝑀)) = (𝐴↑(𝑁𝑀)))
2322oveq2d 6016 . . . . 5 (𝑤 = 𝑁 → ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) = ((abs‘(𝐹𝑀)) · (𝐴↑(𝑁𝑀))))
2420, 23breq12d 4095 . . . 4 (𝑤 = 𝑁 → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) ↔ (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑁𝑀)))))
2524imbi2d 230 . . 3 (𝑤 = 𝑁 → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀)))) ↔ (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑁𝑀))))))
26 fveq2 5626 . . . . . . . . 9 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
2726eleq1d 2298 . . . . . . . 8 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑀) ∈ ℂ))
28 cvgratnn.6 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
2928ralrimiva 2603 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
30 cvgratnn.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
3127, 29, 30rspcdva 2912 . . . . . . 7 (𝜑 → (𝐹𝑀) ∈ ℂ)
3231abscld 11687 . . . . . 6 (𝜑 → (abs‘(𝐹𝑀)) ∈ ℝ)
3332leidd 8657 . . . . 5 (𝜑 → (abs‘(𝐹𝑀)) ≤ (abs‘(𝐹𝑀)))
3430nncnd 9120 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
3534subidd 8441 . . . . . . . . 9 (𝜑 → (𝑀𝑀) = 0)
3635oveq2d 6016 . . . . . . . 8 (𝜑 → (𝐴↑(𝑀𝑀)) = (𝐴↑0))
37 cvgratnn.3 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
3837recnd 8171 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
3938exp0d 10884 . . . . . . . 8 (𝜑 → (𝐴↑0) = 1)
4036, 39eqtrd 2262 . . . . . . 7 (𝜑 → (𝐴↑(𝑀𝑀)) = 1)
4140oveq2d 6016 . . . . . 6 (𝜑 → ((abs‘(𝐹𝑀)) · (𝐴↑(𝑀𝑀))) = ((abs‘(𝐹𝑀)) · 1))
4232recnd 8171 . . . . . . 7 (𝜑 → (abs‘(𝐹𝑀)) ∈ ℂ)
4342mulridd 8159 . . . . . 6 (𝜑 → ((abs‘(𝐹𝑀)) · 1) = (abs‘(𝐹𝑀)))
4441, 43eqtrd 2262 . . . . 5 (𝜑 → ((abs‘(𝐹𝑀)) · (𝐴↑(𝑀𝑀))) = (abs‘(𝐹𝑀)))
4533, 44breqtrrd 4110 . . . 4 (𝜑 → (abs‘(𝐹𝑀)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑀𝑀))))
4645a1i 9 . . 3 (𝑀 ∈ ℤ → (𝜑 → (abs‘(𝐹𝑀)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑀𝑀)))))
47 eluznn 9791 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ)
4830, 47sylan 283 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ)
4948, 28syldan 282 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
5049abscld 11687 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) ∈ ℝ)
5132adantr 276 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑀)) ∈ ℝ)
5237adantr 276 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝐴 ∈ ℝ)
53 uznn0sub 9750 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑀) → (𝑘𝑀) ∈ ℕ0)
5453adantl 277 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝑘𝑀) ∈ ℕ0)
5552, 54reexpcld 10907 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴↑(𝑘𝑀)) ∈ ℝ)
5651, 55remulcld 8173 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) ∈ ℝ)
57 0red 8143 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → 0 ∈ ℝ)
58 cvgratnn.gt0 . . . . . . . . . 10 (𝜑 → 0 < 𝐴)
5958adantr 276 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → 0 < 𝐴)
6057, 52, 59ltled 8261 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → 0 ≤ 𝐴)
61 lemul2a 9002 . . . . . . . . 9 ((((abs‘(𝐹𝑘)) ∈ ℝ ∧ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀)))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀)))))
6261ex 115 . . . . . . . 8 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))))))
6350, 56, 52, 60, 62syl112anc 1275 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))))))
6438adantr 276 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
6542adantr 276 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑀)) ∈ ℂ)
6655recnd 8171 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴↑(𝑘𝑀)) ∈ ℂ)
6764, 65, 66mul12d 8294 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴 · ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀)))) = ((abs‘(𝐹𝑀)) · (𝐴 · (𝐴↑(𝑘𝑀)))))
6864, 54expp1d 10891 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴↑((𝑘𝑀) + 1)) = ((𝐴↑(𝑘𝑀)) · 𝐴))
6948nncnd 9120 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℂ)
70 1cnd 8158 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑀)) → 1 ∈ ℂ)
71 eluzel2 9723 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
7271adantl 277 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑀 ∈ ℤ)
7372zcnd 9566 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑀 ∈ ℂ)
7469, 70, 73addsubd 8474 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑘 + 1) − 𝑀) = ((𝑘𝑀) + 1))
7574oveq2d 6016 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴↑((𝑘 + 1) − 𝑀)) = (𝐴↑((𝑘𝑀) + 1)))
7664, 66mulcomd 8164 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴 · (𝐴↑(𝑘𝑀))) = ((𝐴↑(𝑘𝑀)) · 𝐴))
7768, 75, 763eqtr4rd 2273 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴 · (𝐴↑(𝑘𝑀))) = (𝐴↑((𝑘 + 1) − 𝑀)))
7877oveq2d 6016 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑀)) · (𝐴 · (𝐴↑(𝑘𝑀)))) = ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))))
7967, 78eqtrd 2262 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴 · ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀)))) = ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))))
8079breq2d 4094 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀)))) ↔ (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))))
8163, 80sylibd 149 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))))
82 cvgratnn.7 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
8348, 82syldan 282 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
84 fveq2 5626 . . . . . . . . . . 11 (𝑛 = (𝑘 + 1) → (𝐹𝑛) = (𝐹‘(𝑘 + 1)))
8584eleq1d 2298 . . . . . . . . . 10 (𝑛 = (𝑘 + 1) → ((𝐹𝑛) ∈ ℂ ↔ (𝐹‘(𝑘 + 1)) ∈ ℂ))
86 fveq2 5626 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
8786eleq1d 2298 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑛) ∈ ℂ))
8887cbvralv 2765 . . . . . . . . . . . 12 (∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ ↔ ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ℂ)
8929, 88sylib 122 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ℂ)
9089adantr 276 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ℂ)
9148peano2nnd 9121 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝑘 + 1) ∈ ℕ)
9285, 90, 91rspcdva 2912 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
9392abscld 11687 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ)
9452, 50remulcld 8173 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴 · (abs‘(𝐹𝑘))) ∈ ℝ)
95 peano2uz 9774 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ𝑀) → (𝑘 + 1) ∈ (ℤ𝑀))
9695adantl 277 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝑘 + 1) ∈ (ℤ𝑀))
97 uznn0sub 9750 . . . . . . . . . . 11 ((𝑘 + 1) ∈ (ℤ𝑀) → ((𝑘 + 1) − 𝑀) ∈ ℕ0)
9896, 97syl 14 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑘 + 1) − 𝑀) ∈ ℕ0)
9952, 98reexpcld 10907 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴↑((𝑘 + 1) − 𝑀)) ∈ ℝ)
10051, 99remulcld 8173 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))) ∈ ℝ)
101 letr 8225 . . . . . . . 8 (((abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ ∧ (𝐴 · (abs‘(𝐹𝑘))) ∈ ℝ ∧ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))) ∈ ℝ) → (((abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))) ∧ (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))))
10293, 94, 100, 101syl3anc 1271 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (((abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))) ∧ (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))))
10383, 102mpand 429 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))))
10481, 103syld 45 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))))
105104expcom 116 . . . 4 (𝑘 ∈ (ℤ𝑀) → (𝜑 → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))))))
106105a2d 26 . . 3 (𝑘 ∈ (ℤ𝑀) → ((𝜑 → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀)))) → (𝜑 → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))))))
1077, 13, 19, 25, 46, 106uzind4 9779 . 2 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑁𝑀)))))
1081, 107mpcom 36 1 (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑁𝑀))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  wral 2508   class class class wbr 4082  cfv 5317  (class class class)co 6000  cc 7993  cr 7994  0cc0 7995  1c1 7996   + caddc 7998   · cmul 8000   < clt 8177  cle 8178  cmin 8313  cn 9106  0cn0 9365  cz 9442  cuz 9718  cexp 10755  abscabs 11503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-rp 9846  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505
This theorem is referenced by:  cvgratnnlemabsle  12033
  Copyright terms: Public domain W3C validator