ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemmn GIF version

Theorem cvgratnnlemmn 11778
Description: Lemma for cvgratnn 11784. (Contributed by Jim Kingdon, 15-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3 (𝜑𝐴 ∈ ℝ)
cvgratnn.4 (𝜑𝐴 < 1)
cvgratnn.gt0 (𝜑 → 0 < 𝐴)
cvgratnn.6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
cvgratnn.7 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
cvgratnn.m (𝜑𝑀 ∈ ℕ)
cvgratnn.n (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
cvgratnnlemmn (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑁𝑀))))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘   𝑘,𝑀

Proof of Theorem cvgratnnlemmn
Dummy variables 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvgratnn.n . 2 (𝜑𝑁 ∈ (ℤ𝑀))
2 2fveq3 5580 . . . . 5 (𝑤 = 𝑀 → (abs‘(𝐹𝑤)) = (abs‘(𝐹𝑀)))
3 oveq1 5950 . . . . . . 7 (𝑤 = 𝑀 → (𝑤𝑀) = (𝑀𝑀))
43oveq2d 5959 . . . . . 6 (𝑤 = 𝑀 → (𝐴↑(𝑤𝑀)) = (𝐴↑(𝑀𝑀)))
54oveq2d 5959 . . . . 5 (𝑤 = 𝑀 → ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) = ((abs‘(𝐹𝑀)) · (𝐴↑(𝑀𝑀))))
62, 5breq12d 4056 . . . 4 (𝑤 = 𝑀 → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) ↔ (abs‘(𝐹𝑀)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑀𝑀)))))
76imbi2d 230 . . 3 (𝑤 = 𝑀 → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀)))) ↔ (𝜑 → (abs‘(𝐹𝑀)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑀𝑀))))))
8 2fveq3 5580 . . . . 5 (𝑤 = 𝑘 → (abs‘(𝐹𝑤)) = (abs‘(𝐹𝑘)))
9 oveq1 5950 . . . . . . 7 (𝑤 = 𝑘 → (𝑤𝑀) = (𝑘𝑀))
109oveq2d 5959 . . . . . 6 (𝑤 = 𝑘 → (𝐴↑(𝑤𝑀)) = (𝐴↑(𝑘𝑀)))
1110oveq2d 5959 . . . . 5 (𝑤 = 𝑘 → ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) = ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))))
128, 11breq12d 4056 . . . 4 (𝑤 = 𝑘 → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) ↔ (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀)))))
1312imbi2d 230 . . 3 (𝑤 = 𝑘 → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀)))) ↔ (𝜑 → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))))))
14 2fveq3 5580 . . . . 5 (𝑤 = (𝑘 + 1) → (abs‘(𝐹𝑤)) = (abs‘(𝐹‘(𝑘 + 1))))
15 oveq1 5950 . . . . . . 7 (𝑤 = (𝑘 + 1) → (𝑤𝑀) = ((𝑘 + 1) − 𝑀))
1615oveq2d 5959 . . . . . 6 (𝑤 = (𝑘 + 1) → (𝐴↑(𝑤𝑀)) = (𝐴↑((𝑘 + 1) − 𝑀)))
1716oveq2d 5959 . . . . 5 (𝑤 = (𝑘 + 1) → ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) = ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))))
1814, 17breq12d 4056 . . . 4 (𝑤 = (𝑘 + 1) → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) ↔ (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))))
1918imbi2d 230 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀)))) ↔ (𝜑 → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))))))
20 2fveq3 5580 . . . . 5 (𝑤 = 𝑁 → (abs‘(𝐹𝑤)) = (abs‘(𝐹𝑁)))
21 oveq1 5950 . . . . . . 7 (𝑤 = 𝑁 → (𝑤𝑀) = (𝑁𝑀))
2221oveq2d 5959 . . . . . 6 (𝑤 = 𝑁 → (𝐴↑(𝑤𝑀)) = (𝐴↑(𝑁𝑀)))
2322oveq2d 5959 . . . . 5 (𝑤 = 𝑁 → ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) = ((abs‘(𝐹𝑀)) · (𝐴↑(𝑁𝑀))))
2420, 23breq12d 4056 . . . 4 (𝑤 = 𝑁 → ((abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀))) ↔ (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑁𝑀)))))
2524imbi2d 230 . . 3 (𝑤 = 𝑁 → ((𝜑 → (abs‘(𝐹𝑤)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑤𝑀)))) ↔ (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑁𝑀))))))
26 fveq2 5575 . . . . . . . . 9 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
2726eleq1d 2273 . . . . . . . 8 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑀) ∈ ℂ))
28 cvgratnn.6 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
2928ralrimiva 2578 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
30 cvgratnn.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
3127, 29, 30rspcdva 2881 . . . . . . 7 (𝜑 → (𝐹𝑀) ∈ ℂ)
3231abscld 11434 . . . . . 6 (𝜑 → (abs‘(𝐹𝑀)) ∈ ℝ)
3332leidd 8586 . . . . 5 (𝜑 → (abs‘(𝐹𝑀)) ≤ (abs‘(𝐹𝑀)))
3430nncnd 9049 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
3534subidd 8370 . . . . . . . . 9 (𝜑 → (𝑀𝑀) = 0)
3635oveq2d 5959 . . . . . . . 8 (𝜑 → (𝐴↑(𝑀𝑀)) = (𝐴↑0))
37 cvgratnn.3 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
3837recnd 8100 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
3938exp0d 10810 . . . . . . . 8 (𝜑 → (𝐴↑0) = 1)
4036, 39eqtrd 2237 . . . . . . 7 (𝜑 → (𝐴↑(𝑀𝑀)) = 1)
4140oveq2d 5959 . . . . . 6 (𝜑 → ((abs‘(𝐹𝑀)) · (𝐴↑(𝑀𝑀))) = ((abs‘(𝐹𝑀)) · 1))
4232recnd 8100 . . . . . . 7 (𝜑 → (abs‘(𝐹𝑀)) ∈ ℂ)
4342mulridd 8088 . . . . . 6 (𝜑 → ((abs‘(𝐹𝑀)) · 1) = (abs‘(𝐹𝑀)))
4441, 43eqtrd 2237 . . . . 5 (𝜑 → ((abs‘(𝐹𝑀)) · (𝐴↑(𝑀𝑀))) = (abs‘(𝐹𝑀)))
4533, 44breqtrrd 4071 . . . 4 (𝜑 → (abs‘(𝐹𝑀)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑀𝑀))))
4645a1i 9 . . 3 (𝑀 ∈ ℤ → (𝜑 → (abs‘(𝐹𝑀)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑀𝑀)))))
47 eluznn 9720 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ)
4830, 47sylan 283 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ)
4948, 28syldan 282 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
5049abscld 11434 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) ∈ ℝ)
5132adantr 276 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑀)) ∈ ℝ)
5237adantr 276 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝐴 ∈ ℝ)
53 uznn0sub 9679 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑀) → (𝑘𝑀) ∈ ℕ0)
5453adantl 277 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝑘𝑀) ∈ ℕ0)
5552, 54reexpcld 10833 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴↑(𝑘𝑀)) ∈ ℝ)
5651, 55remulcld 8102 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) ∈ ℝ)
57 0red 8072 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → 0 ∈ ℝ)
58 cvgratnn.gt0 . . . . . . . . . 10 (𝜑 → 0 < 𝐴)
5958adantr 276 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → 0 < 𝐴)
6057, 52, 59ltled 8190 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → 0 ≤ 𝐴)
61 lemul2a 8931 . . . . . . . . 9 ((((abs‘(𝐹𝑘)) ∈ ℝ ∧ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀)))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀)))))
6261ex 115 . . . . . . . 8 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))))))
6350, 56, 52, 60, 62syl112anc 1253 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))))))
6438adantr 276 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
6542adantr 276 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑀)) ∈ ℂ)
6655recnd 8100 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴↑(𝑘𝑀)) ∈ ℂ)
6764, 65, 66mul12d 8223 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴 · ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀)))) = ((abs‘(𝐹𝑀)) · (𝐴 · (𝐴↑(𝑘𝑀)))))
6864, 54expp1d 10817 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴↑((𝑘𝑀) + 1)) = ((𝐴↑(𝑘𝑀)) · 𝐴))
6948nncnd 9049 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℂ)
70 1cnd 8087 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑀)) → 1 ∈ ℂ)
71 eluzel2 9652 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
7271adantl 277 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑀 ∈ ℤ)
7372zcnd 9495 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑀 ∈ ℂ)
7469, 70, 73addsubd 8403 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑘 + 1) − 𝑀) = ((𝑘𝑀) + 1))
7574oveq2d 5959 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴↑((𝑘 + 1) − 𝑀)) = (𝐴↑((𝑘𝑀) + 1)))
7664, 66mulcomd 8093 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴 · (𝐴↑(𝑘𝑀))) = ((𝐴↑(𝑘𝑀)) · 𝐴))
7768, 75, 763eqtr4rd 2248 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴 · (𝐴↑(𝑘𝑀))) = (𝐴↑((𝑘 + 1) − 𝑀)))
7877oveq2d 5959 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑀)) · (𝐴 · (𝐴↑(𝑘𝑀)))) = ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))))
7967, 78eqtrd 2237 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴 · ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀)))) = ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))))
8079breq2d 4055 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐴 · (abs‘(𝐹𝑘))) ≤ (𝐴 · ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀)))) ↔ (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))))
8163, 80sylibd 149 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) → (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))))
82 cvgratnn.7 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
8348, 82syldan 282 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
84 fveq2 5575 . . . . . . . . . . 11 (𝑛 = (𝑘 + 1) → (𝐹𝑛) = (𝐹‘(𝑘 + 1)))
8584eleq1d 2273 . . . . . . . . . 10 (𝑛 = (𝑘 + 1) → ((𝐹𝑛) ∈ ℂ ↔ (𝐹‘(𝑘 + 1)) ∈ ℂ))
86 fveq2 5575 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
8786eleq1d 2273 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑛) ∈ ℂ))
8887cbvralv 2737 . . . . . . . . . . . 12 (∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ ↔ ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ℂ)
8929, 88sylib 122 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ℂ)
9089adantr 276 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ℂ)
9148peano2nnd 9050 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝑘 + 1) ∈ ℕ)
9285, 90, 91rspcdva 2881 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
9392abscld 11434 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ)
9452, 50remulcld 8102 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴 · (abs‘(𝐹𝑘))) ∈ ℝ)
95 peano2uz 9703 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ𝑀) → (𝑘 + 1) ∈ (ℤ𝑀))
9695adantl 277 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝑘 + 1) ∈ (ℤ𝑀))
97 uznn0sub 9679 . . . . . . . . . . 11 ((𝑘 + 1) ∈ (ℤ𝑀) → ((𝑘 + 1) − 𝑀) ∈ ℕ0)
9896, 97syl 14 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑘 + 1) − 𝑀) ∈ ℕ0)
9952, 98reexpcld 10833 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴↑((𝑘 + 1) − 𝑀)) ∈ ℝ)
10051, 99remulcld 8102 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))) ∈ ℝ)
101 letr 8154 . . . . . . . 8 (((abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ ∧ (𝐴 · (abs‘(𝐹𝑘))) ∈ ℝ ∧ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))) ∈ ℝ) → (((abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))) ∧ (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))))
10293, 94, 100, 101syl3anc 1249 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (((abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))) ∧ (𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))))
10383, 102mpand 429 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐴 · (abs‘(𝐹𝑘))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))))
10481, 103syld 45 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀)))))
105104expcom 116 . . . 4 (𝑘 ∈ (ℤ𝑀) → (𝜑 → ((abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))))))
106105a2d 26 . . 3 (𝑘 ∈ (ℤ𝑀) → ((𝜑 → (abs‘(𝐹𝑘)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑘𝑀)))) → (𝜑 → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑((𝑘 + 1) − 𝑀))))))
1077, 13, 19, 25, 46, 106uzind4 9708 . 2 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑁𝑀)))))
1081, 107mpcom 36 1 (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑁𝑀))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1372  wcel 2175  wral 2483   class class class wbr 4043  cfv 5270  (class class class)co 5943  cc 7922  cr 7923  0cc0 7924  1c1 7925   + caddc 7927   · cmul 7929   < clt 8106  cle 8107  cmin 8242  cn 9035  0cn0 9294  cz 9371  cuz 9647  cexp 10681  abscabs 11250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-rp 9775  df-seqfrec 10591  df-exp 10682  df-cj 11095  df-re 11096  df-im 11097  df-rsqrt 11251  df-abs 11252
This theorem is referenced by:  cvgratnnlemabsle  11780
  Copyright terms: Public domain W3C validator