ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  leexp2r GIF version

Theorem leexp2r 10509
Description: Weak ordering relationship for exponentiation. (Contributed by Paul Chapman, 14-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.)
Assertion
Ref Expression
leexp2r (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑁) ≤ (𝐴𝑀))

Proof of Theorem leexp2r
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5850 . . . . . . . 8 (𝑗 = 𝑀 → (𝐴𝑗) = (𝐴𝑀))
21breq1d 3992 . . . . . . 7 (𝑗 = 𝑀 → ((𝐴𝑗) ≤ (𝐴𝑀) ↔ (𝐴𝑀) ≤ (𝐴𝑀)))
32imbi2d 229 . . . . . 6 (𝑗 = 𝑀 → ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑗) ≤ (𝐴𝑀)) ↔ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑀) ≤ (𝐴𝑀))))
4 oveq2 5850 . . . . . . . 8 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
54breq1d 3992 . . . . . . 7 (𝑗 = 𝑘 → ((𝐴𝑗) ≤ (𝐴𝑀) ↔ (𝐴𝑘) ≤ (𝐴𝑀)))
65imbi2d 229 . . . . . 6 (𝑗 = 𝑘 → ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑗) ≤ (𝐴𝑀)) ↔ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑘) ≤ (𝐴𝑀))))
7 oveq2 5850 . . . . . . . 8 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
87breq1d 3992 . . . . . . 7 (𝑗 = (𝑘 + 1) → ((𝐴𝑗) ≤ (𝐴𝑀) ↔ (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑀)))
98imbi2d 229 . . . . . 6 (𝑗 = (𝑘 + 1) → ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑗) ≤ (𝐴𝑀)) ↔ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑀))))
10 oveq2 5850 . . . . . . . 8 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
1110breq1d 3992 . . . . . . 7 (𝑗 = 𝑁 → ((𝐴𝑗) ≤ (𝐴𝑀) ↔ (𝐴𝑁) ≤ (𝐴𝑀)))
1211imbi2d 229 . . . . . 6 (𝑗 = 𝑁 → ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑗) ≤ (𝐴𝑀)) ↔ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑁) ≤ (𝐴𝑀))))
13 reexpcl 10472 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → (𝐴𝑀) ∈ ℝ)
1413adantr 274 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑀) ∈ ℝ)
1514leidd 8412 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑀) ≤ (𝐴𝑀))
1615a1i 9 . . . . . 6 (𝑀 ∈ ℤ → (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑀) ≤ (𝐴𝑀)))
17 simprll 527 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 𝐴 ∈ ℝ)
18 1red 7914 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 1 ∈ ℝ)
19 simprlr 528 . . . . . . . . . . . . 13 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 𝑀 ∈ ℕ0)
20 simpl 108 . . . . . . . . . . . . 13 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 𝑘 ∈ (ℤ𝑀))
21 eluznn0 9537 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
2219, 20, 21syl2anc 409 . . . . . . . . . . . 12 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 𝑘 ∈ ℕ0)
23 reexpcl 10472 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
2417, 22, 23syl2anc 409 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝐴𝑘) ∈ ℝ)
25 simprrl 529 . . . . . . . . . . . 12 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 0 ≤ 𝐴)
26 expge0 10491 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴𝑘))
2717, 22, 25, 26syl3anc 1228 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 0 ≤ (𝐴𝑘))
28 simprrr 530 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 𝐴 ≤ 1)
2917, 18, 24, 27, 28lemul2ad 8835 . . . . . . . . . 10 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → ((𝐴𝑘) · 𝐴) ≤ ((𝐴𝑘) · 1))
3017recnd 7927 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 𝐴 ∈ ℂ)
31 expp1 10462 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
3230, 22, 31syl2anc 409 . . . . . . . . . 10 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
3324recnd 7927 . . . . . . . . . . . 12 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝐴𝑘) ∈ ℂ)
3433mulid1d 7916 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → ((𝐴𝑘) · 1) = (𝐴𝑘))
3534eqcomd 2171 . . . . . . . . . 10 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝐴𝑘) = ((𝐴𝑘) · 1))
3629, 32, 353brtr4d 4014 . . . . . . . . 9 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑘))
37 peano2nn0 9154 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
3822, 37syl 14 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝑘 + 1) ∈ ℕ0)
39 reexpcl 10472 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝑘 + 1) ∈ ℕ0) → (𝐴↑(𝑘 + 1)) ∈ ℝ)
4017, 38, 39syl2anc 409 . . . . . . . . . 10 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝐴↑(𝑘 + 1)) ∈ ℝ)
4113ad2antrl 482 . . . . . . . . . 10 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝐴𝑀) ∈ ℝ)
42 letr 7981 . . . . . . . . . 10 (((𝐴↑(𝑘 + 1)) ∈ ℝ ∧ (𝐴𝑘) ∈ ℝ ∧ (𝐴𝑀) ∈ ℝ) → (((𝐴↑(𝑘 + 1)) ≤ (𝐴𝑘) ∧ (𝐴𝑘) ≤ (𝐴𝑀)) → (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑀)))
4340, 24, 41, 42syl3anc 1228 . . . . . . . . 9 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (((𝐴↑(𝑘 + 1)) ≤ (𝐴𝑘) ∧ (𝐴𝑘) ≤ (𝐴𝑀)) → (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑀)))
4436, 43mpand 426 . . . . . . . 8 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → ((𝐴𝑘) ≤ (𝐴𝑀) → (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑀)))
4544ex 114 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → ((𝐴𝑘) ≤ (𝐴𝑀) → (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑀))))
4645a2d 26 . . . . . 6 (𝑘 ∈ (ℤ𝑀) → ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑘) ≤ (𝐴𝑀)) → (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑀))))
473, 6, 9, 12, 16, 46uzind4 9526 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑁) ≤ (𝐴𝑀)))
4847expd 256 . . . 4 (𝑁 ∈ (ℤ𝑀) → ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → ((0 ≤ 𝐴𝐴 ≤ 1) → (𝐴𝑁) ≤ (𝐴𝑀))))
4948com12 30 . . 3 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → (𝑁 ∈ (ℤ𝑀) → ((0 ≤ 𝐴𝐴 ≤ 1) → (𝐴𝑁) ≤ (𝐴𝑀))))
50493impia 1190 . 2 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → ((0 ≤ 𝐴𝐴 ≤ 1) → (𝐴𝑁) ≤ (𝐴𝑀)))
5150imp 123 1 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑁) ≤ (𝐴𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968   = wceq 1343  wcel 2136   class class class wbr 3982  cfv 5188  (class class class)co 5842  cc 7751  cr 7752  0cc0 7753  1c1 7754   + caddc 7756   · cmul 7758  cle 7934  0cn0 9114  cz 9191  cuz 9466  cexp 10454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-seqfrec 10381  df-exp 10455
This theorem is referenced by:  exple1  10511  leexp2rd  10618
  Copyright terms: Public domain W3C validator