ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  leexp2r GIF version

Theorem leexp2r 10499
Description: Weak ordering relationship for exponentiation. (Contributed by Paul Chapman, 14-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.)
Assertion
Ref Expression
leexp2r (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑁) ≤ (𝐴𝑀))

Proof of Theorem leexp2r
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5844 . . . . . . . 8 (𝑗 = 𝑀 → (𝐴𝑗) = (𝐴𝑀))
21breq1d 3986 . . . . . . 7 (𝑗 = 𝑀 → ((𝐴𝑗) ≤ (𝐴𝑀) ↔ (𝐴𝑀) ≤ (𝐴𝑀)))
32imbi2d 229 . . . . . 6 (𝑗 = 𝑀 → ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑗) ≤ (𝐴𝑀)) ↔ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑀) ≤ (𝐴𝑀))))
4 oveq2 5844 . . . . . . . 8 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
54breq1d 3986 . . . . . . 7 (𝑗 = 𝑘 → ((𝐴𝑗) ≤ (𝐴𝑀) ↔ (𝐴𝑘) ≤ (𝐴𝑀)))
65imbi2d 229 . . . . . 6 (𝑗 = 𝑘 → ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑗) ≤ (𝐴𝑀)) ↔ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑘) ≤ (𝐴𝑀))))
7 oveq2 5844 . . . . . . . 8 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
87breq1d 3986 . . . . . . 7 (𝑗 = (𝑘 + 1) → ((𝐴𝑗) ≤ (𝐴𝑀) ↔ (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑀)))
98imbi2d 229 . . . . . 6 (𝑗 = (𝑘 + 1) → ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑗) ≤ (𝐴𝑀)) ↔ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑀))))
10 oveq2 5844 . . . . . . . 8 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
1110breq1d 3986 . . . . . . 7 (𝑗 = 𝑁 → ((𝐴𝑗) ≤ (𝐴𝑀) ↔ (𝐴𝑁) ≤ (𝐴𝑀)))
1211imbi2d 229 . . . . . 6 (𝑗 = 𝑁 → ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑗) ≤ (𝐴𝑀)) ↔ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑁) ≤ (𝐴𝑀))))
13 reexpcl 10462 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → (𝐴𝑀) ∈ ℝ)
1413adantr 274 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑀) ∈ ℝ)
1514leidd 8403 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑀) ≤ (𝐴𝑀))
1615a1i 9 . . . . . 6 (𝑀 ∈ ℤ → (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑀) ≤ (𝐴𝑀)))
17 simprll 527 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 𝐴 ∈ ℝ)
18 1red 7905 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 1 ∈ ℝ)
19 simprlr 528 . . . . . . . . . . . . 13 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 𝑀 ∈ ℕ0)
20 simpl 108 . . . . . . . . . . . . 13 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 𝑘 ∈ (ℤ𝑀))
21 eluznn0 9528 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
2219, 20, 21syl2anc 409 . . . . . . . . . . . 12 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 𝑘 ∈ ℕ0)
23 reexpcl 10462 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
2417, 22, 23syl2anc 409 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝐴𝑘) ∈ ℝ)
25 simprrl 529 . . . . . . . . . . . 12 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 0 ≤ 𝐴)
26 expge0 10481 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴𝑘))
2717, 22, 25, 26syl3anc 1227 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 0 ≤ (𝐴𝑘))
28 simprrr 530 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 𝐴 ≤ 1)
2917, 18, 24, 27, 28lemul2ad 8826 . . . . . . . . . 10 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → ((𝐴𝑘) · 𝐴) ≤ ((𝐴𝑘) · 1))
3017recnd 7918 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → 𝐴 ∈ ℂ)
31 expp1 10452 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
3230, 22, 31syl2anc 409 . . . . . . . . . 10 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
3324recnd 7918 . . . . . . . . . . . 12 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝐴𝑘) ∈ ℂ)
3433mulid1d 7907 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → ((𝐴𝑘) · 1) = (𝐴𝑘))
3534eqcomd 2170 . . . . . . . . . 10 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝐴𝑘) = ((𝐴𝑘) · 1))
3629, 32, 353brtr4d 4008 . . . . . . . . 9 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑘))
37 peano2nn0 9145 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
3822, 37syl 14 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝑘 + 1) ∈ ℕ0)
39 reexpcl 10462 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝑘 + 1) ∈ ℕ0) → (𝐴↑(𝑘 + 1)) ∈ ℝ)
4017, 38, 39syl2anc 409 . . . . . . . . . 10 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝐴↑(𝑘 + 1)) ∈ ℝ)
4113ad2antrl 482 . . . . . . . . . 10 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (𝐴𝑀) ∈ ℝ)
42 letr 7972 . . . . . . . . . 10 (((𝐴↑(𝑘 + 1)) ∈ ℝ ∧ (𝐴𝑘) ∈ ℝ ∧ (𝐴𝑀) ∈ ℝ) → (((𝐴↑(𝑘 + 1)) ≤ (𝐴𝑘) ∧ (𝐴𝑘) ≤ (𝐴𝑀)) → (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑀)))
4340, 24, 41, 42syl3anc 1227 . . . . . . . . 9 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → (((𝐴↑(𝑘 + 1)) ≤ (𝐴𝑘) ∧ (𝐴𝑘) ≤ (𝐴𝑀)) → (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑀)))
4436, 43mpand 426 . . . . . . . 8 ((𝑘 ∈ (ℤ𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1))) → ((𝐴𝑘) ≤ (𝐴𝑀) → (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑀)))
4544ex 114 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → ((𝐴𝑘) ≤ (𝐴𝑀) → (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑀))))
4645a2d 26 . . . . . 6 (𝑘 ∈ (ℤ𝑀) → ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑘) ≤ (𝐴𝑀)) → (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴↑(𝑘 + 1)) ≤ (𝐴𝑀))))
473, 6, 9, 12, 16, 46uzind4 9517 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑁) ≤ (𝐴𝑀)))
4847expd 256 . . . 4 (𝑁 ∈ (ℤ𝑀) → ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → ((0 ≤ 𝐴𝐴 ≤ 1) → (𝐴𝑁) ≤ (𝐴𝑀))))
4948com12 30 . . 3 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → (𝑁 ∈ (ℤ𝑀) → ((0 ≤ 𝐴𝐴 ≤ 1) → (𝐴𝑁) ≤ (𝐴𝑀))))
50493impia 1189 . 2 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → ((0 ≤ 𝐴𝐴 ≤ 1) → (𝐴𝑁) ≤ (𝐴𝑀)))
5150imp 123 1 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑁) ≤ (𝐴𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 967   = wceq 1342  wcel 2135   class class class wbr 3976  cfv 5182  (class class class)co 5836  cc 7742  cr 7743  0cc0 7744  1c1 7745   + caddc 7747   · cmul 7749  cle 7925  0cn0 9105  cz 9182  cuz 9457  cexp 10444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-frec 6350  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-n0 9106  df-z 9183  df-uz 9458  df-seqfrec 10371  df-exp 10445
This theorem is referenced by:  exple1  10501  leexp2rd  10607
  Copyright terms: Public domain W3C validator