Step | Hyp | Ref
| Expression |
1 | | oveq2 5850 |
. . . . . . . 8
⊢ (𝑗 = 𝑀 → (𝐴↑𝑗) = (𝐴↑𝑀)) |
2 | 1 | breq1d 3992 |
. . . . . . 7
⊢ (𝑗 = 𝑀 → ((𝐴↑𝑗) ≤ (𝐴↑𝑀) ↔ (𝐴↑𝑀) ≤ (𝐴↑𝑀))) |
3 | 2 | imbi2d 229 |
. . . . . 6
⊢ (𝑗 = 𝑀 → ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1)) → (𝐴↑𝑗) ≤ (𝐴↑𝑀)) ↔ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1)) → (𝐴↑𝑀) ≤ (𝐴↑𝑀)))) |
4 | | oveq2 5850 |
. . . . . . . 8
⊢ (𝑗 = 𝑘 → (𝐴↑𝑗) = (𝐴↑𝑘)) |
5 | 4 | breq1d 3992 |
. . . . . . 7
⊢ (𝑗 = 𝑘 → ((𝐴↑𝑗) ≤ (𝐴↑𝑀) ↔ (𝐴↑𝑘) ≤ (𝐴↑𝑀))) |
6 | 5 | imbi2d 229 |
. . . . . 6
⊢ (𝑗 = 𝑘 → ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1)) → (𝐴↑𝑗) ≤ (𝐴↑𝑀)) ↔ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1)) → (𝐴↑𝑘) ≤ (𝐴↑𝑀)))) |
7 | | oveq2 5850 |
. . . . . . . 8
⊢ (𝑗 = (𝑘 + 1) → (𝐴↑𝑗) = (𝐴↑(𝑘 + 1))) |
8 | 7 | breq1d 3992 |
. . . . . . 7
⊢ (𝑗 = (𝑘 + 1) → ((𝐴↑𝑗) ≤ (𝐴↑𝑀) ↔ (𝐴↑(𝑘 + 1)) ≤ (𝐴↑𝑀))) |
9 | 8 | imbi2d 229 |
. . . . . 6
⊢ (𝑗 = (𝑘 + 1) → ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1)) → (𝐴↑𝑗) ≤ (𝐴↑𝑀)) ↔ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1)) → (𝐴↑(𝑘 + 1)) ≤ (𝐴↑𝑀)))) |
10 | | oveq2 5850 |
. . . . . . . 8
⊢ (𝑗 = 𝑁 → (𝐴↑𝑗) = (𝐴↑𝑁)) |
11 | 10 | breq1d 3992 |
. . . . . . 7
⊢ (𝑗 = 𝑁 → ((𝐴↑𝑗) ≤ (𝐴↑𝑀) ↔ (𝐴↑𝑁) ≤ (𝐴↑𝑀))) |
12 | 11 | imbi2d 229 |
. . . . . 6
⊢ (𝑗 = 𝑁 → ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1)) → (𝐴↑𝑗) ≤ (𝐴↑𝑀)) ↔ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1)) → (𝐴↑𝑁) ≤ (𝐴↑𝑀)))) |
13 | | reexpcl 10472 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0)
→ (𝐴↑𝑀) ∈
ℝ) |
14 | 13 | adantr 274 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0)
∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1)) → (𝐴↑𝑀) ∈ ℝ) |
15 | 14 | leidd 8412 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0)
∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1)) → (𝐴↑𝑀) ≤ (𝐴↑𝑀)) |
16 | 15 | a1i 9 |
. . . . . 6
⊢ (𝑀 ∈ ℤ → (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0)
∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1)) → (𝐴↑𝑀) ≤ (𝐴↑𝑀))) |
17 | | simprll 527 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → 𝐴 ∈ ℝ) |
18 | | 1red 7914 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → 1 ∈
ℝ) |
19 | | simprlr 528 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → 𝑀 ∈
ℕ0) |
20 | | simpl 108 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → 𝑘 ∈ (ℤ≥‘𝑀)) |
21 | | eluznn0 9537 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℕ0
∧ 𝑘 ∈
(ℤ≥‘𝑀)) → 𝑘 ∈ ℕ0) |
22 | 19, 20, 21 | syl2anc 409 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → 𝑘 ∈ ℕ0) |
23 | | reexpcl 10472 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑𝑘) ∈
ℝ) |
24 | 17, 22, 23 | syl2anc 409 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → (𝐴↑𝑘) ∈ ℝ) |
25 | | simprrl 529 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → 0 ≤ 𝐴) |
26 | | expge0 10491 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0
∧ 0 ≤ 𝐴) → 0
≤ (𝐴↑𝑘)) |
27 | 17, 22, 25, 26 | syl3anc 1228 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → 0 ≤ (𝐴↑𝑘)) |
28 | | simprrr 530 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → 𝐴 ≤ 1) |
29 | 17, 18, 24, 27, 28 | lemul2ad 8835 |
. . . . . . . . . 10
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → ((𝐴↑𝑘) · 𝐴) ≤ ((𝐴↑𝑘) · 1)) |
30 | 17 | recnd 7927 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → 𝐴 ∈ ℂ) |
31 | | expp1 10462 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑(𝑘 + 1)) = ((𝐴↑𝑘) · 𝐴)) |
32 | 30, 22, 31 | syl2anc 409 |
. . . . . . . . . 10
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → (𝐴↑(𝑘 + 1)) = ((𝐴↑𝑘) · 𝐴)) |
33 | 24 | recnd 7927 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → (𝐴↑𝑘) ∈ ℂ) |
34 | 33 | mulid1d 7916 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → ((𝐴↑𝑘) · 1) = (𝐴↑𝑘)) |
35 | 34 | eqcomd 2171 |
. . . . . . . . . 10
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → (𝐴↑𝑘) = ((𝐴↑𝑘) · 1)) |
36 | 29, 32, 35 | 3brtr4d 4014 |
. . . . . . . . 9
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → (𝐴↑(𝑘 + 1)) ≤ (𝐴↑𝑘)) |
37 | | peano2nn0 9154 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ0
→ (𝑘 + 1) ∈
ℕ0) |
38 | 22, 37 | syl 14 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → (𝑘 + 1) ∈
ℕ0) |
39 | | reexpcl 10472 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ (𝑘 + 1) ∈
ℕ0) → (𝐴↑(𝑘 + 1)) ∈ ℝ) |
40 | 17, 38, 39 | syl2anc 409 |
. . . . . . . . . 10
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → (𝐴↑(𝑘 + 1)) ∈ ℝ) |
41 | 13 | ad2antrl 482 |
. . . . . . . . . 10
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → (𝐴↑𝑀) ∈ ℝ) |
42 | | letr 7981 |
. . . . . . . . . 10
⊢ (((𝐴↑(𝑘 + 1)) ∈ ℝ ∧ (𝐴↑𝑘) ∈ ℝ ∧ (𝐴↑𝑀) ∈ ℝ) → (((𝐴↑(𝑘 + 1)) ≤ (𝐴↑𝑘) ∧ (𝐴↑𝑘) ≤ (𝐴↑𝑀)) → (𝐴↑(𝑘 + 1)) ≤ (𝐴↑𝑀))) |
43 | 40, 24, 41, 42 | syl3anc 1228 |
. . . . . . . . 9
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → (((𝐴↑(𝑘 + 1)) ≤ (𝐴↑𝑘) ∧ (𝐴↑𝑘) ≤ (𝐴↑𝑀)) → (𝐴↑(𝑘 + 1)) ≤ (𝐴↑𝑀))) |
44 | 36, 43 | mpand 426 |
. . . . . . . 8
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → ((𝐴↑𝑘) ≤ (𝐴↑𝑀) → (𝐴↑(𝑘 + 1)) ≤ (𝐴↑𝑀))) |
45 | 44 | ex 114 |
. . . . . . 7
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1)) → ((𝐴↑𝑘) ≤ (𝐴↑𝑀) → (𝐴↑(𝑘 + 1)) ≤ (𝐴↑𝑀)))) |
46 | 45 | a2d 26 |
. . . . . 6
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1)) → (𝐴↑𝑘) ≤ (𝐴↑𝑀)) → (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1)) → (𝐴↑(𝑘 + 1)) ≤ (𝐴↑𝑀)))) |
47 | 3, 6, 9, 12, 16, 46 | uzind4 9526 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1)) → (𝐴↑𝑁) ≤ (𝐴↑𝑀))) |
48 | 47 | expd 256 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → ((0 ≤
𝐴 ∧ 𝐴 ≤ 1) → (𝐴↑𝑁) ≤ (𝐴↑𝑀)))) |
49 | 48 | com12 30 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0)
→ (𝑁 ∈
(ℤ≥‘𝑀) → ((0 ≤ 𝐴 ∧ 𝐴 ≤ 1) → (𝐴↑𝑁) ≤ (𝐴↑𝑀)))) |
50 | 49 | 3impia 1190 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0
∧ 𝑁 ∈
(ℤ≥‘𝑀)) → ((0 ≤ 𝐴 ∧ 𝐴 ≤ 1) → (𝐴↑𝑁) ≤ (𝐴↑𝑀))) |
51 | 50 | imp 123 |
1
⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0
∧ 𝑁 ∈
(ℤ≥‘𝑀)) ∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1)) → (𝐴↑𝑁) ≤ (𝐴↑𝑀)) |