| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 5930 |
. . . . . . . 8
⊢ (𝑗 = 𝑀 → (𝐴↑𝑗) = (𝐴↑𝑀)) |
| 2 | 1 | breq1d 4043 |
. . . . . . 7
⊢ (𝑗 = 𝑀 → ((𝐴↑𝑗) ≤ (𝐴↑𝑀) ↔ (𝐴↑𝑀) ≤ (𝐴↑𝑀))) |
| 3 | 2 | imbi2d 230 |
. . . . . 6
⊢ (𝑗 = 𝑀 → ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1)) → (𝐴↑𝑗) ≤ (𝐴↑𝑀)) ↔ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1)) → (𝐴↑𝑀) ≤ (𝐴↑𝑀)))) |
| 4 | | oveq2 5930 |
. . . . . . . 8
⊢ (𝑗 = 𝑘 → (𝐴↑𝑗) = (𝐴↑𝑘)) |
| 5 | 4 | breq1d 4043 |
. . . . . . 7
⊢ (𝑗 = 𝑘 → ((𝐴↑𝑗) ≤ (𝐴↑𝑀) ↔ (𝐴↑𝑘) ≤ (𝐴↑𝑀))) |
| 6 | 5 | imbi2d 230 |
. . . . . 6
⊢ (𝑗 = 𝑘 → ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1)) → (𝐴↑𝑗) ≤ (𝐴↑𝑀)) ↔ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1)) → (𝐴↑𝑘) ≤ (𝐴↑𝑀)))) |
| 7 | | oveq2 5930 |
. . . . . . . 8
⊢ (𝑗 = (𝑘 + 1) → (𝐴↑𝑗) = (𝐴↑(𝑘 + 1))) |
| 8 | 7 | breq1d 4043 |
. . . . . . 7
⊢ (𝑗 = (𝑘 + 1) → ((𝐴↑𝑗) ≤ (𝐴↑𝑀) ↔ (𝐴↑(𝑘 + 1)) ≤ (𝐴↑𝑀))) |
| 9 | 8 | imbi2d 230 |
. . . . . 6
⊢ (𝑗 = (𝑘 + 1) → ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1)) → (𝐴↑𝑗) ≤ (𝐴↑𝑀)) ↔ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1)) → (𝐴↑(𝑘 + 1)) ≤ (𝐴↑𝑀)))) |
| 10 | | oveq2 5930 |
. . . . . . . 8
⊢ (𝑗 = 𝑁 → (𝐴↑𝑗) = (𝐴↑𝑁)) |
| 11 | 10 | breq1d 4043 |
. . . . . . 7
⊢ (𝑗 = 𝑁 → ((𝐴↑𝑗) ≤ (𝐴↑𝑀) ↔ (𝐴↑𝑁) ≤ (𝐴↑𝑀))) |
| 12 | 11 | imbi2d 230 |
. . . . . 6
⊢ (𝑗 = 𝑁 → ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1)) → (𝐴↑𝑗) ≤ (𝐴↑𝑀)) ↔ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1)) → (𝐴↑𝑁) ≤ (𝐴↑𝑀)))) |
| 13 | | reexpcl 10648 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0)
→ (𝐴↑𝑀) ∈
ℝ) |
| 14 | 13 | adantr 276 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0)
∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1)) → (𝐴↑𝑀) ∈ ℝ) |
| 15 | 14 | leidd 8541 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0)
∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1)) → (𝐴↑𝑀) ≤ (𝐴↑𝑀)) |
| 16 | 15 | a1i 9 |
. . . . . 6
⊢ (𝑀 ∈ ℤ → (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0)
∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1)) → (𝐴↑𝑀) ≤ (𝐴↑𝑀))) |
| 17 | | simprll 537 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → 𝐴 ∈ ℝ) |
| 18 | | 1red 8041 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → 1 ∈
ℝ) |
| 19 | | simprlr 538 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → 𝑀 ∈
ℕ0) |
| 20 | | simpl 109 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 21 | | eluznn0 9673 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℕ0
∧ 𝑘 ∈
(ℤ≥‘𝑀)) → 𝑘 ∈ ℕ0) |
| 22 | 19, 20, 21 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → 𝑘 ∈ ℕ0) |
| 23 | | reexpcl 10648 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑𝑘) ∈
ℝ) |
| 24 | 17, 22, 23 | syl2anc 411 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → (𝐴↑𝑘) ∈ ℝ) |
| 25 | | simprrl 539 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → 0 ≤ 𝐴) |
| 26 | | expge0 10667 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0
∧ 0 ≤ 𝐴) → 0
≤ (𝐴↑𝑘)) |
| 27 | 17, 22, 25, 26 | syl3anc 1249 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → 0 ≤ (𝐴↑𝑘)) |
| 28 | | simprrr 540 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → 𝐴 ≤ 1) |
| 29 | 17, 18, 24, 27, 28 | lemul2ad 8967 |
. . . . . . . . . 10
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → ((𝐴↑𝑘) · 𝐴) ≤ ((𝐴↑𝑘) · 1)) |
| 30 | 17 | recnd 8055 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → 𝐴 ∈ ℂ) |
| 31 | | expp1 10638 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑(𝑘 + 1)) = ((𝐴↑𝑘) · 𝐴)) |
| 32 | 30, 22, 31 | syl2anc 411 |
. . . . . . . . . 10
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → (𝐴↑(𝑘 + 1)) = ((𝐴↑𝑘) · 𝐴)) |
| 33 | 24 | recnd 8055 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → (𝐴↑𝑘) ∈ ℂ) |
| 34 | 33 | mulridd 8043 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → ((𝐴↑𝑘) · 1) = (𝐴↑𝑘)) |
| 35 | 34 | eqcomd 2202 |
. . . . . . . . . 10
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → (𝐴↑𝑘) = ((𝐴↑𝑘) · 1)) |
| 36 | 29, 32, 35 | 3brtr4d 4065 |
. . . . . . . . 9
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → (𝐴↑(𝑘 + 1)) ≤ (𝐴↑𝑘)) |
| 37 | | peano2nn0 9289 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ0
→ (𝑘 + 1) ∈
ℕ0) |
| 38 | 22, 37 | syl 14 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → (𝑘 + 1) ∈
ℕ0) |
| 39 | | reexpcl 10648 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ (𝑘 + 1) ∈
ℕ0) → (𝐴↑(𝑘 + 1)) ∈ ℝ) |
| 40 | 17, 38, 39 | syl2anc 411 |
. . . . . . . . . 10
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → (𝐴↑(𝑘 + 1)) ∈ ℝ) |
| 41 | 13 | ad2antrl 490 |
. . . . . . . . . 10
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → (𝐴↑𝑀) ∈ ℝ) |
| 42 | | letr 8109 |
. . . . . . . . . 10
⊢ (((𝐴↑(𝑘 + 1)) ∈ ℝ ∧ (𝐴↑𝑘) ∈ ℝ ∧ (𝐴↑𝑀) ∈ ℝ) → (((𝐴↑(𝑘 + 1)) ≤ (𝐴↑𝑘) ∧ (𝐴↑𝑘) ≤ (𝐴↑𝑀)) → (𝐴↑(𝑘 + 1)) ≤ (𝐴↑𝑀))) |
| 43 | 40, 24, 41, 42 | syl3anc 1249 |
. . . . . . . . 9
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → (((𝐴↑(𝑘 + 1)) ≤ (𝐴↑𝑘) ∧ (𝐴↑𝑘) ≤ (𝐴↑𝑀)) → (𝐴↑(𝑘 + 1)) ≤ (𝐴↑𝑀))) |
| 44 | 36, 43 | mpand 429 |
. . . . . . . 8
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1))) → ((𝐴↑𝑘) ≤ (𝐴↑𝑀) → (𝐴↑(𝑘 + 1)) ≤ (𝐴↑𝑀))) |
| 45 | 44 | ex 115 |
. . . . . . 7
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1)) → ((𝐴↑𝑘) ≤ (𝐴↑𝑀) → (𝐴↑(𝑘 + 1)) ≤ (𝐴↑𝑀)))) |
| 46 | 45 | a2d 26 |
. . . . . 6
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → ((((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1)) → (𝐴↑𝑘) ≤ (𝐴↑𝑀)) → (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1)) → (𝐴↑(𝑘 + 1)) ≤ (𝐴↑𝑀)))) |
| 47 | 3, 6, 9, 12, 16, 46 | uzind4 9662 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 1)) → (𝐴↑𝑁) ≤ (𝐴↑𝑀))) |
| 48 | 47 | expd 258 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → ((0 ≤
𝐴 ∧ 𝐴 ≤ 1) → (𝐴↑𝑁) ≤ (𝐴↑𝑀)))) |
| 49 | 48 | com12 30 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0)
→ (𝑁 ∈
(ℤ≥‘𝑀) → ((0 ≤ 𝐴 ∧ 𝐴 ≤ 1) → (𝐴↑𝑁) ≤ (𝐴↑𝑀)))) |
| 50 | 49 | 3impia 1202 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0
∧ 𝑁 ∈
(ℤ≥‘𝑀)) → ((0 ≤ 𝐴 ∧ 𝐴 ≤ 1) → (𝐴↑𝑁) ≤ (𝐴↑𝑀))) |
| 51 | 50 | imp 124 |
1
⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0
∧ 𝑁 ∈
(ℤ≥‘𝑀)) ∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1)) → (𝐴↑𝑁) ≤ (𝐴↑𝑀)) |