| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulridd | GIF version | ||
| Description: Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| mulridd | ⊢ (𝜑 → (𝐴 · 1) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | mulrid 8042 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 · 1) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7896 1c1 7899 · cmul 7903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7990 ax-1cn 7991 ax-icn 7993 ax-addcl 7994 ax-mulcl 7996 ax-mulcom 7999 ax-mulass 8001 ax-distr 8002 ax-1rid 8005 ax-cnre 8009 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: muladd11 8178 muls1d 8463 ltmul1 8638 mulap0 8700 divrecap 8734 diveqap1 8751 conjmulap 8775 apmul1 8834 qapne 9732 divelunit 10096 modqid 10460 q2submod 10496 addmodlteq 10509 expadd 10692 leexp2r 10704 nnlesq 10754 sqoddm1div8 10804 nn0opthlem1d 10831 faclbnd 10852 faclbnd2 10853 faclbnd6 10855 facavg 10857 bcn0 10866 bcn1 10869 reccn2ap 11497 hash2iun1dif1 11664 binom11 11670 trireciplem 11684 geosergap 11690 cvgratnnlemnexp 11708 cvgratnnlemmn 11709 fprodsplitdc 11780 efzval 11867 tanaddaplem 11922 tanaddap 11923 cos01gt0 11947 absef 11954 1dvds 11989 bitsfzo 12139 bitsmod 12140 bezoutlema 12193 bezoutlemb 12194 gcdmultiple 12214 sqgcd 12223 lcm1 12276 coprmdvds 12287 qredeu 12292 phiprmpw 12417 coprimeprodsq 12453 pc2dvds 12526 sumhashdc 12543 fldivp1 12544 pcfaclem 12545 prmpwdvds 12551 zsssubrg 14219 mulgrhm2 14244 znrrg 14294 dveflem 15070 plyconst 15089 plycolemc 15102 efper 15151 tangtx 15182 logdivlti 15225 rpcxpmul2 15257 relogbexpap 15302 rplogbcxp 15307 0sgm 15329 lgsdir2 15382 lgsquad2lem1 15430 lgsquad3 15433 2sqlem6 15469 2sqlem8 15472 trilpolemclim 15793 trilpolemisumle 15795 trilpolemeq1 15797 trilpolemlt1 15798 redcwlpolemeq1 15811 nconstwlpolemgt0 15821 |
| Copyright terms: Public domain | W3C validator |