| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulridd | GIF version | ||
| Description: Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| mulridd | ⊢ (𝜑 → (𝐴 · 1) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | mulrid 8040 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 · 1) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7894 1c1 7897 · cmul 7901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7988 ax-1cn 7989 ax-icn 7991 ax-addcl 7992 ax-mulcl 7994 ax-mulcom 7997 ax-mulass 7999 ax-distr 8000 ax-1rid 8003 ax-cnre 8007 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: muladd11 8176 muls1d 8461 ltmul1 8636 mulap0 8698 divrecap 8732 diveqap1 8749 conjmulap 8773 apmul1 8832 qapne 9730 divelunit 10094 modqid 10458 q2submod 10494 addmodlteq 10507 expadd 10690 leexp2r 10702 nnlesq 10752 sqoddm1div8 10802 nn0opthlem1d 10829 faclbnd 10850 faclbnd2 10851 faclbnd6 10853 facavg 10855 bcn0 10864 bcn1 10867 reccn2ap 11495 hash2iun1dif1 11662 binom11 11668 trireciplem 11682 geosergap 11688 cvgratnnlemnexp 11706 cvgratnnlemmn 11707 fprodsplitdc 11778 efzval 11865 tanaddaplem 11920 tanaddap 11921 cos01gt0 11945 absef 11952 1dvds 11987 bitsfzo 12137 bitsmod 12138 bezoutlema 12191 bezoutlemb 12192 gcdmultiple 12212 sqgcd 12221 lcm1 12274 coprmdvds 12285 qredeu 12290 phiprmpw 12415 coprimeprodsq 12451 pc2dvds 12524 sumhashdc 12541 fldivp1 12542 pcfaclem 12543 prmpwdvds 12549 zsssubrg 14217 mulgrhm2 14242 znrrg 14292 dveflem 15046 plyconst 15065 plycolemc 15078 efper 15127 tangtx 15158 logdivlti 15201 rpcxpmul2 15233 relogbexpap 15278 rplogbcxp 15283 0sgm 15305 lgsdir2 15358 lgsquad2lem1 15406 lgsquad3 15409 2sqlem6 15445 2sqlem8 15448 trilpolemclim 15767 trilpolemisumle 15769 trilpolemeq1 15771 trilpolemlt1 15772 redcwlpolemeq1 15785 nconstwlpolemgt0 15795 |
| Copyright terms: Public domain | W3C validator |