| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulridd | GIF version | ||
| Description: Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| mulridd | ⊢ (𝜑 → (𝐴 · 1) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | mulrid 8111 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 · 1) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 (class class class)co 5974 ℂcc 7965 1c1 7968 · cmul 7972 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 ax-resscn 8059 ax-1cn 8060 ax-icn 8062 ax-addcl 8063 ax-mulcl 8065 ax-mulcom 8068 ax-mulass 8070 ax-distr 8071 ax-1rid 8074 ax-cnre 8078 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-iota 5254 df-fv 5302 df-ov 5977 |
| This theorem is referenced by: muladd11 8247 muls1d 8532 ltmul1 8707 mulap0 8769 divrecap 8803 diveqap1 8820 conjmulap 8844 apmul1 8903 qapne 9802 divelunit 10166 modqid 10538 q2submod 10574 addmodlteq 10587 expadd 10770 leexp2r 10782 nnlesq 10832 sqoddm1div8 10882 nn0opthlem1d 10909 faclbnd 10930 faclbnd2 10931 faclbnd6 10933 facavg 10935 bcn0 10944 bcn1 10947 reccn2ap 11790 hash2iun1dif1 11957 binom11 11963 trireciplem 11977 geosergap 11983 cvgratnnlemnexp 12001 cvgratnnlemmn 12002 fprodsplitdc 12073 efzval 12160 tanaddaplem 12215 tanaddap 12216 cos01gt0 12240 absef 12247 1dvds 12282 bitsfzo 12432 bitsmod 12433 bezoutlema 12486 bezoutlemb 12487 gcdmultiple 12507 sqgcd 12516 lcm1 12569 coprmdvds 12580 qredeu 12585 phiprmpw 12710 coprimeprodsq 12746 pc2dvds 12819 sumhashdc 12836 fldivp1 12837 pcfaclem 12838 prmpwdvds 12844 zsssubrg 14514 mulgrhm2 14539 znrrg 14589 dveflem 15365 plyconst 15384 plycolemc 15397 efper 15446 tangtx 15477 logdivlti 15520 rpcxpmul2 15552 relogbexpap 15597 rplogbcxp 15602 0sgm 15624 lgsdir2 15677 lgsquad2lem1 15725 lgsquad3 15728 2sqlem6 15764 2sqlem8 15767 trilpolemclim 16315 trilpolemisumle 16317 trilpolemeq1 16319 trilpolemlt1 16320 redcwlpolemeq1 16333 nconstwlpolemgt0 16343 |
| Copyright terms: Public domain | W3C validator |