![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulridd | GIF version |
Description: Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
mulridd | ⊢ (𝜑 → (𝐴 · 1) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | mulrid 8016 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 · 1) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 (class class class)co 5918 ℂcc 7870 1c1 7873 · cmul 7877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-resscn 7964 ax-1cn 7965 ax-icn 7967 ax-addcl 7968 ax-mulcl 7970 ax-mulcom 7973 ax-mulass 7975 ax-distr 7976 ax-1rid 7979 ax-cnre 7983 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 |
This theorem is referenced by: muladd11 8152 ltmul1 8611 mulap0 8673 divrecap 8707 diveqap1 8724 conjmulap 8748 apmul1 8807 qapne 9704 divelunit 10068 modqid 10420 q2submod 10456 addmodlteq 10469 expadd 10652 leexp2r 10664 nnlesq 10714 sqoddm1div8 10764 nn0opthlem1d 10791 faclbnd 10812 faclbnd2 10813 faclbnd6 10815 facavg 10817 bcn0 10826 bcn1 10829 reccn2ap 11456 hash2iun1dif1 11623 binom11 11629 trireciplem 11643 geosergap 11649 cvgratnnlemnexp 11667 cvgratnnlemmn 11668 fprodsplitdc 11739 efzval 11826 tanaddaplem 11881 tanaddap 11882 cos01gt0 11906 absef 11913 1dvds 11948 bezoutlema 12136 bezoutlemb 12137 gcdmultiple 12157 sqgcd 12166 lcm1 12219 coprmdvds 12230 qredeu 12235 phiprmpw 12360 coprimeprodsq 12395 pc2dvds 12468 sumhashdc 12485 fldivp1 12486 pcfaclem 12487 prmpwdvds 12493 zsssubrg 14073 mulgrhm2 14098 znrrg 14148 dveflem 14872 plyconst 14891 efper 14942 tangtx 14973 logdivlti 15016 relogbexpap 15090 rplogbcxp 15095 lgsdir2 15149 2sqlem6 15207 2sqlem8 15210 trilpolemclim 15526 trilpolemisumle 15528 trilpolemeq1 15530 trilpolemlt1 15531 redcwlpolemeq1 15544 nconstwlpolemgt0 15554 |
Copyright terms: Public domain | W3C validator |