| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulridd | GIF version | ||
| Description: Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| mulridd | ⊢ (𝜑 → (𝐴 · 1) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | mulrid 8076 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 · 1) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 (class class class)co 5951 ℂcc 7930 1c1 7933 · cmul 7937 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-resscn 8024 ax-1cn 8025 ax-icn 8027 ax-addcl 8028 ax-mulcl 8030 ax-mulcom 8033 ax-mulass 8035 ax-distr 8036 ax-1rid 8039 ax-cnre 8043 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-iota 5237 df-fv 5284 df-ov 5954 |
| This theorem is referenced by: muladd11 8212 muls1d 8497 ltmul1 8672 mulap0 8734 divrecap 8768 diveqap1 8785 conjmulap 8809 apmul1 8868 qapne 9767 divelunit 10131 modqid 10501 q2submod 10537 addmodlteq 10550 expadd 10733 leexp2r 10745 nnlesq 10795 sqoddm1div8 10845 nn0opthlem1d 10872 faclbnd 10893 faclbnd2 10894 faclbnd6 10896 facavg 10898 bcn0 10907 bcn1 10910 reccn2ap 11668 hash2iun1dif1 11835 binom11 11841 trireciplem 11855 geosergap 11861 cvgratnnlemnexp 11879 cvgratnnlemmn 11880 fprodsplitdc 11951 efzval 12038 tanaddaplem 12093 tanaddap 12094 cos01gt0 12118 absef 12125 1dvds 12160 bitsfzo 12310 bitsmod 12311 bezoutlema 12364 bezoutlemb 12365 gcdmultiple 12385 sqgcd 12394 lcm1 12447 coprmdvds 12458 qredeu 12463 phiprmpw 12588 coprimeprodsq 12624 pc2dvds 12697 sumhashdc 12714 fldivp1 12715 pcfaclem 12716 prmpwdvds 12722 zsssubrg 14391 mulgrhm2 14416 znrrg 14466 dveflem 15242 plyconst 15261 plycolemc 15274 efper 15323 tangtx 15354 logdivlti 15397 rpcxpmul2 15429 relogbexpap 15474 rplogbcxp 15479 0sgm 15501 lgsdir2 15554 lgsquad2lem1 15602 lgsquad3 15605 2sqlem6 15641 2sqlem8 15644 trilpolemclim 16049 trilpolemisumle 16051 trilpolemeq1 16053 trilpolemlt1 16054 redcwlpolemeq1 16067 nconstwlpolemgt0 16077 |
| Copyright terms: Public domain | W3C validator |