| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulridd | GIF version | ||
| Description: Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| mulridd | ⊢ (𝜑 → (𝐴 · 1) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | mulrid 8025 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 · 1) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 (class class class)co 5923 ℂcc 7879 1c1 7882 · cmul 7886 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7973 ax-1cn 7974 ax-icn 7976 ax-addcl 7977 ax-mulcl 7979 ax-mulcom 7982 ax-mulass 7984 ax-distr 7985 ax-1rid 7988 ax-cnre 7992 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5926 |
| This theorem is referenced by: muladd11 8161 muls1d 8446 ltmul1 8621 mulap0 8683 divrecap 8717 diveqap1 8734 conjmulap 8758 apmul1 8817 qapne 9715 divelunit 10079 modqid 10443 q2submod 10479 addmodlteq 10492 expadd 10675 leexp2r 10687 nnlesq 10737 sqoddm1div8 10787 nn0opthlem1d 10814 faclbnd 10835 faclbnd2 10836 faclbnd6 10838 facavg 10840 bcn0 10849 bcn1 10852 reccn2ap 11480 hash2iun1dif1 11647 binom11 11653 trireciplem 11667 geosergap 11673 cvgratnnlemnexp 11691 cvgratnnlemmn 11692 fprodsplitdc 11763 efzval 11850 tanaddaplem 11905 tanaddap 11906 cos01gt0 11930 absef 11937 1dvds 11972 bitsfzo 12122 bitsmod 12123 bezoutlema 12176 bezoutlemb 12177 gcdmultiple 12197 sqgcd 12206 lcm1 12259 coprmdvds 12270 qredeu 12275 phiprmpw 12400 coprimeprodsq 12436 pc2dvds 12509 sumhashdc 12526 fldivp1 12527 pcfaclem 12528 prmpwdvds 12534 zsssubrg 14151 mulgrhm2 14176 znrrg 14226 dveflem 14972 plyconst 14991 plycolemc 15004 efper 15053 tangtx 15084 logdivlti 15127 rpcxpmul2 15159 relogbexpap 15204 rplogbcxp 15209 0sgm 15231 lgsdir2 15284 lgsquad2lem1 15332 lgsquad3 15335 2sqlem6 15371 2sqlem8 15374 trilpolemclim 15690 trilpolemisumle 15692 trilpolemeq1 15694 trilpolemlt1 15695 redcwlpolemeq1 15708 nconstwlpolemgt0 15718 |
| Copyright terms: Public domain | W3C validator |