| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulridd | GIF version | ||
| Description: Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| mulridd | ⊢ (𝜑 → (𝐴 · 1) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | mulrid 8151 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 · 1) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 (class class class)co 6007 ℂcc 8005 1c1 8008 · cmul 8012 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-resscn 8099 ax-1cn 8100 ax-icn 8102 ax-addcl 8103 ax-mulcl 8105 ax-mulcom 8108 ax-mulass 8110 ax-distr 8111 ax-1rid 8114 ax-cnre 8118 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6010 |
| This theorem is referenced by: muladd11 8287 muls1d 8572 ltmul1 8747 mulap0 8809 divrecap 8843 diveqap1 8860 conjmulap 8884 apmul1 8943 qapne 9842 divelunit 10206 modqid 10579 q2submod 10615 addmodlteq 10628 expadd 10811 leexp2r 10823 nnlesq 10873 sqoddm1div8 10923 nn0opthlem1d 10950 faclbnd 10971 faclbnd2 10972 faclbnd6 10974 facavg 10976 bcn0 10985 bcn1 10988 reccn2ap 11832 hash2iun1dif1 11999 binom11 12005 trireciplem 12019 geosergap 12025 cvgratnnlemnexp 12043 cvgratnnlemmn 12044 fprodsplitdc 12115 efzval 12202 tanaddaplem 12257 tanaddap 12258 cos01gt0 12282 absef 12289 1dvds 12324 bitsfzo 12474 bitsmod 12475 bezoutlema 12528 bezoutlemb 12529 gcdmultiple 12549 sqgcd 12558 lcm1 12611 coprmdvds 12622 qredeu 12627 phiprmpw 12752 coprimeprodsq 12788 pc2dvds 12861 sumhashdc 12878 fldivp1 12879 pcfaclem 12880 prmpwdvds 12886 zsssubrg 14557 mulgrhm2 14582 znrrg 14632 dveflem 15408 plyconst 15427 plycolemc 15440 efper 15489 tangtx 15520 logdivlti 15563 rpcxpmul2 15595 relogbexpap 15640 rplogbcxp 15645 0sgm 15667 lgsdir2 15720 lgsquad2lem1 15768 lgsquad3 15771 2sqlem6 15807 2sqlem8 15810 trilpolemclim 16434 trilpolemisumle 16436 trilpolemeq1 16438 trilpolemlt1 16439 redcwlpolemeq1 16452 nconstwlpolemgt0 16462 |
| Copyright terms: Public domain | W3C validator |