| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mulridd | GIF version | ||
| Description: Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) | 
| Ref | Expression | 
|---|---|
| addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) | 
| Ref | Expression | 
|---|---|
| mulridd | ⊢ (𝜑 → (𝐴 · 1) = 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | mulrid 8023 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 · 1) = 𝐴) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 (class class class)co 5922 ℂcc 7877 1c1 7880 · cmul 7884 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7971 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-mulcl 7977 ax-mulcom 7980 ax-mulass 7982 ax-distr 7983 ax-1rid 7986 ax-cnre 7990 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 | 
| This theorem is referenced by: muladd11 8159 muls1d 8444 ltmul1 8619 mulap0 8681 divrecap 8715 diveqap1 8732 conjmulap 8756 apmul1 8815 qapne 9713 divelunit 10077 modqid 10441 q2submod 10477 addmodlteq 10490 expadd 10673 leexp2r 10685 nnlesq 10735 sqoddm1div8 10785 nn0opthlem1d 10812 faclbnd 10833 faclbnd2 10834 faclbnd6 10836 facavg 10838 bcn0 10847 bcn1 10850 reccn2ap 11478 hash2iun1dif1 11645 binom11 11651 trireciplem 11665 geosergap 11671 cvgratnnlemnexp 11689 cvgratnnlemmn 11690 fprodsplitdc 11761 efzval 11848 tanaddaplem 11903 tanaddap 11904 cos01gt0 11928 absef 11935 1dvds 11970 bitsfzo 12119 bezoutlema 12166 bezoutlemb 12167 gcdmultiple 12187 sqgcd 12196 lcm1 12249 coprmdvds 12260 qredeu 12265 phiprmpw 12390 coprimeprodsq 12426 pc2dvds 12499 sumhashdc 12516 fldivp1 12517 pcfaclem 12518 prmpwdvds 12524 zsssubrg 14141 mulgrhm2 14166 znrrg 14216 dveflem 14962 plyconst 14981 plycolemc 14994 efper 15043 tangtx 15074 logdivlti 15117 rpcxpmul2 15149 relogbexpap 15194 rplogbcxp 15199 0sgm 15221 lgsdir2 15274 lgsquad2lem1 15322 lgsquad3 15325 2sqlem6 15361 2sqlem8 15364 trilpolemclim 15680 trilpolemisumle 15682 trilpolemeq1 15684 trilpolemlt1 15685 redcwlpolemeq1 15698 nconstwlpolemgt0 15708 | 
| Copyright terms: Public domain | W3C validator |