![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulridd | GIF version |
Description: Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
mulridd | ⊢ (𝜑 → (𝐴 · 1) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | mulrid 7956 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 · 1) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 (class class class)co 5877 ℂcc 7811 1c1 7814 · cmul 7818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-resscn 7905 ax-1cn 7906 ax-icn 7908 ax-addcl 7909 ax-mulcl 7911 ax-mulcom 7914 ax-mulass 7916 ax-distr 7917 ax-1rid 7920 ax-cnre 7924 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-iota 5180 df-fv 5226 df-ov 5880 |
This theorem is referenced by: muladd11 8092 ltmul1 8551 mulap0 8613 divrecap 8647 diveqap1 8664 conjmulap 8688 apmul1 8747 qapne 9641 divelunit 10004 modqid 10351 q2submod 10387 addmodlteq 10400 expadd 10564 leexp2r 10576 nnlesq 10626 sqoddm1div8 10676 nn0opthlem1d 10702 faclbnd 10723 faclbnd2 10724 faclbnd6 10726 facavg 10728 bcn0 10737 bcn1 10740 reccn2ap 11323 hash2iun1dif1 11490 binom11 11496 trireciplem 11510 geosergap 11516 cvgratnnlemnexp 11534 cvgratnnlemmn 11535 fprodsplitdc 11606 efzval 11693 tanaddaplem 11748 tanaddap 11749 cos01gt0 11772 absef 11779 1dvds 11814 bezoutlema 12002 bezoutlemb 12003 gcdmultiple 12023 sqgcd 12032 lcm1 12083 coprmdvds 12094 qredeu 12099 phiprmpw 12224 coprimeprodsq 12259 pc2dvds 12331 sumhashdc 12347 fldivp1 12348 pcfaclem 12349 prmpwdvds 12355 zsssubrg 13564 dveflem 14272 efper 14313 tangtx 14344 logdivlti 14387 relogbexpap 14461 rplogbcxp 14466 lgsdir2 14519 2sqlem6 14552 2sqlem8 14555 trilpolemclim 14869 trilpolemisumle 14871 trilpolemeq1 14873 trilpolemlt1 14874 redcwlpolemeq1 14887 nconstwlpolemgt0 14897 |
Copyright terms: Public domain | W3C validator |