ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashfinmndnn GIF version

Theorem hashfinmndnn 13460
Description: A finite monoid has positive integer size. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
hashfinmndnn.1 𝐵 = (Base‘𝐺)
hashfinmndnn.2 (𝜑𝐺 ∈ Mnd)
hashfinmndnn.3 (𝜑𝐵 ∈ Fin)
Assertion
Ref Expression
hashfinmndnn (𝜑 → (♯‘𝐵) ∈ ℕ)

Proof of Theorem hashfinmndnn
StepHypRef Expression
1 hashfinmndnn.3 . . 3 (𝜑𝐵 ∈ Fin)
2 hashcl 10998 . . 3 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
31, 2syl 14 . 2 (𝜑 → (♯‘𝐵) ∈ ℕ0)
4 hashfinmndnn.2 . . . . 5 (𝜑𝐺 ∈ Mnd)
5 hashfinmndnn.1 . . . . . 6 𝐵 = (Base‘𝐺)
6 eqid 2229 . . . . . 6 (0g𝐺) = (0g𝐺)
75, 6mndidcl 13458 . . . . 5 (𝐺 ∈ Mnd → (0g𝐺) ∈ 𝐵)
84, 7syl 14 . . . 4 (𝜑 → (0g𝐺) ∈ 𝐵)
98, 1fihashelne0d 11014 . . 3 (𝜑 → ¬ (♯‘𝐵) = 0)
109neqned 2407 . 2 (𝜑 → (♯‘𝐵) ≠ 0)
11 elnnne0 9379 . 2 ((♯‘𝐵) ∈ ℕ ↔ ((♯‘𝐵) ∈ ℕ0 ∧ (♯‘𝐵) ≠ 0))
123, 10, 11sylanbrc 417 1 (𝜑 → (♯‘𝐵) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  wne 2400  cfv 5317  Fincfn 6885  0cc0 7995  cn 9106  0cn0 9365  chash 10992  Basecbs 13027  0gc0g 13284  Mndcmnd 13444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-recs 6449  df-frec 6535  df-1o 6560  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-2 9165  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-ihash 10993  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445
This theorem is referenced by:  hashfingrpnn  13564
  Copyright terms: Public domain W3C validator