| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashfinmndnn | GIF version | ||
| Description: A finite monoid has positive integer size. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| Ref | Expression |
|---|---|
| hashfinmndnn.1 | ⊢ 𝐵 = (Base‘𝐺) |
| hashfinmndnn.2 | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| hashfinmndnn.3 | ⊢ (𝜑 → 𝐵 ∈ Fin) |
| Ref | Expression |
|---|---|
| hashfinmndnn | ⊢ (𝜑 → (♯‘𝐵) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashfinmndnn.3 | . . 3 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
| 2 | hashcl 10924 | . . 3 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝜑 → (♯‘𝐵) ∈ ℕ0) |
| 4 | hashfinmndnn.2 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
| 5 | hashfinmndnn.1 | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 6 | eqid 2204 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 7 | 5, 6 | mndidcl 13204 | . . . . 5 ⊢ (𝐺 ∈ Mnd → (0g‘𝐺) ∈ 𝐵) |
| 8 | 4, 7 | syl 14 | . . . 4 ⊢ (𝜑 → (0g‘𝐺) ∈ 𝐵) |
| 9 | 8, 1 | fihashelne0d 10940 | . . 3 ⊢ (𝜑 → ¬ (♯‘𝐵) = 0) |
| 10 | 9 | neqned 2382 | . 2 ⊢ (𝜑 → (♯‘𝐵) ≠ 0) |
| 11 | elnnne0 9308 | . 2 ⊢ ((♯‘𝐵) ∈ ℕ ↔ ((♯‘𝐵) ∈ ℕ0 ∧ (♯‘𝐵) ≠ 0)) | |
| 12 | 3, 10, 11 | sylanbrc 417 | 1 ⊢ (𝜑 → (♯‘𝐵) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 ≠ wne 2375 ‘cfv 5270 Fincfn 6826 0cc0 7924 ℕcn 9035 ℕ0cn0 9294 ♯chash 10918 Basecbs 12774 0gc0g 13030 Mndcmnd 13190 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-recs 6390 df-frec 6476 df-1o 6501 df-er 6619 df-en 6827 df-dom 6828 df-fin 6829 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-2 9094 df-n0 9295 df-z 9372 df-uz 9648 df-fz 10130 df-ihash 10919 df-ndx 12777 df-slot 12778 df-base 12780 df-plusg 12864 df-0g 13032 df-mgm 13130 df-sgrp 13176 df-mnd 13191 |
| This theorem is referenced by: hashfingrpnn 13310 |
| Copyright terms: Public domain | W3C validator |