ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashfinmndnn GIF version

Theorem hashfinmndnn 13206
Description: A finite monoid has positive integer size. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
hashfinmndnn.1 𝐵 = (Base‘𝐺)
hashfinmndnn.2 (𝜑𝐺 ∈ Mnd)
hashfinmndnn.3 (𝜑𝐵 ∈ Fin)
Assertion
Ref Expression
hashfinmndnn (𝜑 → (♯‘𝐵) ∈ ℕ)

Proof of Theorem hashfinmndnn
StepHypRef Expression
1 hashfinmndnn.3 . . 3 (𝜑𝐵 ∈ Fin)
2 hashcl 10924 . . 3 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
31, 2syl 14 . 2 (𝜑 → (♯‘𝐵) ∈ ℕ0)
4 hashfinmndnn.2 . . . . 5 (𝜑𝐺 ∈ Mnd)
5 hashfinmndnn.1 . . . . . 6 𝐵 = (Base‘𝐺)
6 eqid 2204 . . . . . 6 (0g𝐺) = (0g𝐺)
75, 6mndidcl 13204 . . . . 5 (𝐺 ∈ Mnd → (0g𝐺) ∈ 𝐵)
84, 7syl 14 . . . 4 (𝜑 → (0g𝐺) ∈ 𝐵)
98, 1fihashelne0d 10940 . . 3 (𝜑 → ¬ (♯‘𝐵) = 0)
109neqned 2382 . 2 (𝜑 → (♯‘𝐵) ≠ 0)
11 elnnne0 9308 . 2 ((♯‘𝐵) ∈ ℕ ↔ ((♯‘𝐵) ∈ ℕ0 ∧ (♯‘𝐵) ≠ 0))
123, 10, 11sylanbrc 417 1 (𝜑 → (♯‘𝐵) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  wcel 2175  wne 2375  cfv 5270  Fincfn 6826  0cc0 7924  cn 9035  0cn0 9294  chash 10918  Basecbs 12774  0gc0g 13030  Mndcmnd 13190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-recs 6390  df-frec 6476  df-1o 6501  df-er 6619  df-en 6827  df-dom 6828  df-fin 6829  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-inn 9036  df-2 9094  df-n0 9295  df-z 9372  df-uz 9648  df-fz 10130  df-ihash 10919  df-ndx 12777  df-slot 12778  df-base 12780  df-plusg 12864  df-0g 13032  df-mgm 13130  df-sgrp 13176  df-mnd 13191
This theorem is referenced by:  hashfingrpnn  13310
  Copyright terms: Public domain W3C validator