| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prodeq1 | GIF version | ||
| Description: Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017.) |
| Ref | Expression |
|---|---|
| prodeq1 | ⊢ (𝐴 = 𝐵 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2349 | . 2 ⊢ Ⅎ𝑘𝐴 | |
| 2 | nfcv 2349 | . 2 ⊢ Ⅎ𝑘𝐵 | |
| 3 | 1, 2 | prodeq1f 11933 | 1 ⊢ (𝐴 = 𝐵 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∏cprod 11931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-if 3576 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-br 4051 df-opab 4113 df-mpt 4114 df-cnv 4690 df-dm 4692 df-rn 4693 df-res 4694 df-iota 5240 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-ov 5959 df-oprab 5960 df-mpo 5961 df-recs 6403 df-frec 6489 df-seqfrec 10610 df-proddc 11932 |
| This theorem is referenced by: prodeq1i 11942 prodeq1d 11945 prod1dc 11967 fprodf1o 11969 fprodssdc 11971 fprodmul 11972 fprodcl2lem 11986 fprodcllem 11987 fprodconst 12001 fprodap0 12002 fprod2d 12004 fprodrec 12010 fprodap0f 12017 fprodle 12021 fprodmodd 12022 |
| Copyright terms: Public domain | W3C validator |