| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prodeq1 | GIF version | ||
| Description: Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017.) |
| Ref | Expression |
|---|---|
| prodeq1 | ⊢ (𝐴 = 𝐵 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2372 | . 2 ⊢ Ⅎ𝑘𝐴 | |
| 2 | nfcv 2372 | . 2 ⊢ Ⅎ𝑘𝐵 | |
| 3 | 1, 2 | prodeq1f 12071 | 1 ⊢ (𝐴 = 𝐵 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∏cprod 12069 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-cnv 4727 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-recs 6457 df-frec 6543 df-seqfrec 10678 df-proddc 12070 |
| This theorem is referenced by: prodeq1i 12080 prodeq1d 12083 prod1dc 12105 fprodf1o 12107 fprodssdc 12109 fprodmul 12110 fprodcl2lem 12124 fprodcllem 12125 fprodconst 12139 fprodap0 12140 fprod2d 12142 fprodrec 12148 fprodap0f 12155 fprodle 12159 fprodmodd 12160 |
| Copyright terms: Public domain | W3C validator |