Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prodeq1 | GIF version |
Description: Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017.) |
Ref | Expression |
---|---|
prodeq1 | ⊢ (𝐴 = 𝐵 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2308 | . 2 ⊢ Ⅎ𝑘𝐴 | |
2 | nfcv 2308 | . 2 ⊢ Ⅎ𝑘𝐵 | |
3 | 1, 2 | prodeq1f 11493 | 1 ⊢ (𝐴 = 𝐵 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∏cprod 11491 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-recs 6273 df-frec 6359 df-seqfrec 10381 df-proddc 11492 |
This theorem is referenced by: prodeq1i 11502 prodeq1d 11505 prod1dc 11527 fprodf1o 11529 fprodssdc 11531 fprodmul 11532 fprodcl2lem 11546 fprodcllem 11547 fprodconst 11561 fprodap0 11562 fprod2d 11564 fprodrec 11570 fprodap0f 11577 fprodle 11581 fprodmodd 11582 |
Copyright terms: Public domain | W3C validator |