ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodeq1 GIF version

Theorem prodeq1 11934
Description: Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017.)
Assertion
Ref Expression
prodeq1 (𝐴 = 𝐵 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem prodeq1
StepHypRef Expression
1 nfcv 2349 . 2 𝑘𝐴
2 nfcv 2349 . 2 𝑘𝐵
31, 2prodeq1f 11933 1 (𝐴 = 𝐵 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  cprod 11931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-if 3576  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-br 4051  df-opab 4113  df-mpt 4114  df-cnv 4690  df-dm 4692  df-rn 4693  df-res 4694  df-iota 5240  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-ov 5959  df-oprab 5960  df-mpo 5961  df-recs 6403  df-frec 6489  df-seqfrec 10610  df-proddc 11932
This theorem is referenced by:  prodeq1i  11942  prodeq1d  11945  prod1dc  11967  fprodf1o  11969  fprodssdc  11971  fprodmul  11972  fprodcl2lem  11986  fprodcllem  11987  fprodconst  12001  fprodap0  12002  fprod2d  12004  fprodrec  12010  fprodap0f  12017  fprodle  12021  fprodmodd  12022
  Copyright terms: Public domain W3C validator