![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqfnfv3 | GIF version |
Description: Derive equality of functions from equality of their values. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
eqfnfv3 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ (𝐹‘𝑥) = (𝐺‘𝑥))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqfnfv2 5398 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)))) | |
2 | eqss 3040 | . . . . 5 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
3 | ancom 262 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵)) | |
4 | 2, 3 | bitri 182 | . . . 4 ⊢ (𝐴 = 𝐵 ↔ (𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵)) |
5 | 4 | anbi1i 446 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) ↔ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
6 | anass 393 | . . . 4 ⊢ (((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) ↔ (𝐵 ⊆ 𝐴 ∧ (𝐴 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)))) | |
7 | dfss3 3015 | . . . . . . 7 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) | |
8 | 7 | anbi1i 446 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) ↔ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
9 | r19.26 2497 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ (𝐹‘𝑥) = (𝐺‘𝑥)) ↔ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
10 | 8, 9 | bitr4i 185 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ (𝐹‘𝑥) = (𝐺‘𝑥))) |
11 | 10 | anbi2i 445 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ (𝐴 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ (𝐹‘𝑥) = (𝐺‘𝑥)))) |
12 | 6, 11 | bitri 182 | . . 3 ⊢ (((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ (𝐹‘𝑥) = (𝐺‘𝑥)))) |
13 | 5, 12 | bitri 182 | . 2 ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ (𝐹‘𝑥) = (𝐺‘𝑥)))) |
14 | 1, 13 | syl6bb 194 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ (𝐹‘𝑥) = (𝐺‘𝑥))))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1289 ∈ wcel 1438 ∀wral 2359 ⊆ wss 2999 Fn wfn 5010 ‘cfv 5015 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-sbc 2841 df-csb 2934 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-br 3846 df-opab 3900 df-mpt 3901 df-id 4120 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-iota 4980 df-fun 5017 df-fn 5018 df-fv 5023 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |