Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqfnfv3 | GIF version |
Description: Derive equality of functions from equality of their values. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
eqfnfv3 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ (𝐹‘𝑥) = (𝐺‘𝑥))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqfnfv2 5594 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)))) | |
2 | eqss 3162 | . . . . 5 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
3 | ancom 264 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵)) | |
4 | 2, 3 | bitri 183 | . . . 4 ⊢ (𝐴 = 𝐵 ↔ (𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵)) |
5 | 4 | anbi1i 455 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) ↔ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
6 | anass 399 | . . . 4 ⊢ (((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) ↔ (𝐵 ⊆ 𝐴 ∧ (𝐴 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)))) | |
7 | dfss3 3137 | . . . . . . 7 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) | |
8 | 7 | anbi1i 455 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) ↔ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
9 | r19.26 2596 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ (𝐹‘𝑥) = (𝐺‘𝑥)) ↔ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
10 | 8, 9 | bitr4i 186 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ (𝐹‘𝑥) = (𝐺‘𝑥))) |
11 | 10 | anbi2i 454 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ (𝐴 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ (𝐹‘𝑥) = (𝐺‘𝑥)))) |
12 | 6, 11 | bitri 183 | . . 3 ⊢ (((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ (𝐹‘𝑥) = (𝐺‘𝑥)))) |
13 | 5, 12 | bitri 183 | . 2 ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ (𝐹‘𝑥) = (𝐺‘𝑥)))) |
14 | 1, 13 | bitrdi 195 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ (𝐹‘𝑥) = (𝐺‘𝑥))))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ∀wral 2448 ⊆ wss 3121 Fn wfn 5193 ‘cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |