ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqfnfv3 GIF version

Theorem eqfnfv3 5399
Description: Derive equality of functions from equality of their values. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
eqfnfv3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐵𝐴 ∧ ∀𝑥𝐴 (𝑥𝐵 ∧ (𝐹𝑥) = (𝐺𝑥)))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝑥,𝐵

Proof of Theorem eqfnfv3
StepHypRef Expression
1 eqfnfv2 5398 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
2 eqss 3040 . . . . 5 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
3 ancom 262 . . . . 5 ((𝐴𝐵𝐵𝐴) ↔ (𝐵𝐴𝐴𝐵))
42, 3bitri 182 . . . 4 (𝐴 = 𝐵 ↔ (𝐵𝐴𝐴𝐵))
54anbi1i 446 . . 3 ((𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)) ↔ ((𝐵𝐴𝐴𝐵) ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
6 anass 393 . . . 4 (((𝐵𝐴𝐴𝐵) ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)) ↔ (𝐵𝐴 ∧ (𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
7 dfss3 3015 . . . . . . 7 (𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
87anbi1i 446 . . . . . 6 ((𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)) ↔ (∀𝑥𝐴 𝑥𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
9 r19.26 2497 . . . . . 6 (∀𝑥𝐴 (𝑥𝐵 ∧ (𝐹𝑥) = (𝐺𝑥)) ↔ (∀𝑥𝐴 𝑥𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
108, 9bitr4i 185 . . . . 5 ((𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)) ↔ ∀𝑥𝐴 (𝑥𝐵 ∧ (𝐹𝑥) = (𝐺𝑥)))
1110anbi2i 445 . . . 4 ((𝐵𝐴 ∧ (𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))) ↔ (𝐵𝐴 ∧ ∀𝑥𝐴 (𝑥𝐵 ∧ (𝐹𝑥) = (𝐺𝑥))))
126, 11bitri 182 . . 3 (((𝐵𝐴𝐴𝐵) ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)) ↔ (𝐵𝐴 ∧ ∀𝑥𝐴 (𝑥𝐵 ∧ (𝐹𝑥) = (𝐺𝑥))))
135, 12bitri 182 . 2 ((𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)) ↔ (𝐵𝐴 ∧ ∀𝑥𝐴 (𝑥𝐵 ∧ (𝐹𝑥) = (𝐺𝑥))))
141, 13syl6bb 194 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐵𝐴 ∧ ∀𝑥𝐴 (𝑥𝐵 ∧ (𝐹𝑥) = (𝐺𝑥)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1289  wcel 1438  wral 2359  wss 2999   Fn wfn 5010  cfv 5015
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-sbc 2841  df-csb 2934  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-mpt 3901  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-iota 4980  df-fun 5017  df-fn 5018  df-fv 5023
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator