| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqfnfv3 | GIF version | ||
| Description: Derive equality of functions from equality of their values. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| eqfnfv3 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ (𝐹‘𝑥) = (𝐺‘𝑥))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqfnfv2 5732 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)))) | |
| 2 | eqss 3239 | . . . . 5 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 3 | ancom 266 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵)) | |
| 4 | 2, 3 | bitri 184 | . . . 4 ⊢ (𝐴 = 𝐵 ↔ (𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵)) |
| 5 | 4 | anbi1i 458 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) ↔ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
| 6 | anass 401 | . . . 4 ⊢ (((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) ↔ (𝐵 ⊆ 𝐴 ∧ (𝐴 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)))) | |
| 7 | dfss3 3213 | . . . . . . 7 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) | |
| 8 | 7 | anbi1i 458 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) ↔ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
| 9 | r19.26 2657 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ (𝐹‘𝑥) = (𝐺‘𝑥)) ↔ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
| 10 | 8, 9 | bitr4i 187 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ (𝐹‘𝑥) = (𝐺‘𝑥))) |
| 11 | 10 | anbi2i 457 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ (𝐴 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ (𝐹‘𝑥) = (𝐺‘𝑥)))) |
| 12 | 6, 11 | bitri 184 | . . 3 ⊢ (((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ (𝐹‘𝑥) = (𝐺‘𝑥)))) |
| 13 | 5, 12 | bitri 184 | . 2 ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ (𝐹‘𝑥) = (𝐺‘𝑥)))) |
| 14 | 1, 13 | bitrdi 196 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ (𝐹‘𝑥) = (𝐺‘𝑥))))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ⊆ wss 3197 Fn wfn 5312 ‘cfv 5317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |