| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bezoutlemmo | GIF version | ||
| Description: Lemma for Bézout's identity. There is at most one nonnegative integer meeting the greatest common divisor condition. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.) |
| Ref | Expression |
|---|---|
| bezoutlemgcd.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| bezoutlemgcd.2 | ⊢ (𝜑 → 𝐵 ∈ ℤ) |
| bezoutlemgcd.3 | ⊢ (𝜑 → 𝐷 ∈ ℕ0) |
| bezoutlemgcd.4 | ⊢ (𝜑 → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) |
| bezoutlemmo.5 | ⊢ (𝜑 → 𝐸 ∈ ℕ0) |
| bezoutlemmo.6 | ⊢ (𝜑 → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐸 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) |
| Ref | Expression |
|---|---|
| bezoutlemmo | ⊢ (𝜑 → 𝐷 = 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bezoutlemgcd.3 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℕ0) | |
| 2 | bezoutlemmo.5 | . 2 ⊢ (𝜑 → 𝐸 ∈ ℕ0) | |
| 3 | 1 | nn0zd 9523 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℤ) |
| 4 | iddvds 12200 | . . . 4 ⊢ (𝐷 ∈ ℤ → 𝐷 ∥ 𝐷) | |
| 5 | 3, 4 | syl 14 | . . 3 ⊢ (𝜑 → 𝐷 ∥ 𝐷) |
| 6 | breq1 4057 | . . . . 5 ⊢ (𝑧 = 𝐷 → (𝑧 ∥ 𝐷 ↔ 𝐷 ∥ 𝐷)) | |
| 7 | breq1 4057 | . . . . 5 ⊢ (𝑧 = 𝐷 → (𝑧 ∥ 𝐸 ↔ 𝐷 ∥ 𝐸)) | |
| 8 | 6, 7 | bibi12d 235 | . . . 4 ⊢ (𝑧 = 𝐷 → ((𝑧 ∥ 𝐷 ↔ 𝑧 ∥ 𝐸) ↔ (𝐷 ∥ 𝐷 ↔ 𝐷 ∥ 𝐸))) |
| 9 | bezoutlemgcd.4 | . . . . . 6 ⊢ (𝜑 → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) | |
| 10 | bezoutlemmo.6 | . . . . . 6 ⊢ (𝜑 → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐸 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) | |
| 11 | r19.26 2633 | . . . . . 6 ⊢ (∀𝑧 ∈ ℤ ((𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ (𝑧 ∥ 𝐸 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) ↔ (∀𝑧 ∈ ℤ (𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐸 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) | |
| 12 | 9, 10, 11 | sylanbrc 417 | . . . . 5 ⊢ (𝜑 → ∀𝑧 ∈ ℤ ((𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ (𝑧 ∥ 𝐸 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) |
| 13 | biantr 955 | . . . . . 6 ⊢ (((𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ (𝑧 ∥ 𝐸 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) → (𝑧 ∥ 𝐷 ↔ 𝑧 ∥ 𝐸)) | |
| 14 | 13 | ralimi 2570 | . . . . 5 ⊢ (∀𝑧 ∈ ℤ ((𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ (𝑧 ∥ 𝐸 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐷 ↔ 𝑧 ∥ 𝐸)) |
| 15 | 12, 14 | syl 14 | . . . 4 ⊢ (𝜑 → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐷 ↔ 𝑧 ∥ 𝐸)) |
| 16 | 8, 15, 3 | rspcdva 2886 | . . 3 ⊢ (𝜑 → (𝐷 ∥ 𝐷 ↔ 𝐷 ∥ 𝐸)) |
| 17 | 5, 16 | mpbid 147 | . 2 ⊢ (𝜑 → 𝐷 ∥ 𝐸) |
| 18 | 2 | nn0zd 9523 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ ℤ) |
| 19 | iddvds 12200 | . . . 4 ⊢ (𝐸 ∈ ℤ → 𝐸 ∥ 𝐸) | |
| 20 | 18, 19 | syl 14 | . . 3 ⊢ (𝜑 → 𝐸 ∥ 𝐸) |
| 21 | breq1 4057 | . . . . 5 ⊢ (𝑧 = 𝐸 → (𝑧 ∥ 𝐷 ↔ 𝐸 ∥ 𝐷)) | |
| 22 | breq1 4057 | . . . . 5 ⊢ (𝑧 = 𝐸 → (𝑧 ∥ 𝐸 ↔ 𝐸 ∥ 𝐸)) | |
| 23 | 21, 22 | bibi12d 235 | . . . 4 ⊢ (𝑧 = 𝐸 → ((𝑧 ∥ 𝐷 ↔ 𝑧 ∥ 𝐸) ↔ (𝐸 ∥ 𝐷 ↔ 𝐸 ∥ 𝐸))) |
| 24 | 23, 15, 18 | rspcdva 2886 | . . 3 ⊢ (𝜑 → (𝐸 ∥ 𝐷 ↔ 𝐸 ∥ 𝐸)) |
| 25 | 20, 24 | mpbird 167 | . 2 ⊢ (𝜑 → 𝐸 ∥ 𝐷) |
| 26 | dvdseq 12244 | . 2 ⊢ (((𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0) ∧ (𝐷 ∥ 𝐸 ∧ 𝐸 ∥ 𝐷)) → 𝐷 = 𝐸) | |
| 27 | 1, 2, 17, 25, 26 | syl22anc 1251 | 1 ⊢ (𝜑 → 𝐷 = 𝐸) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ∀wral 2485 class class class wbr 4054 ℕ0cn0 9325 ℤcz 9402 ∥ cdvds 12183 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-mulrcl 8054 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-precex 8065 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 ax-pre-mulgt0 8072 ax-pre-mulext 8073 ax-arch 8074 ax-caucvg 8075 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-po 4356 df-iso 4357 df-iord 4426 df-on 4428 df-ilim 4429 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-recs 6409 df-frec 6495 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-reap 8678 df-ap 8685 df-div 8776 df-inn 9067 df-2 9125 df-3 9126 df-4 9127 df-n0 9326 df-z 9403 df-uz 9679 df-q 9771 df-rp 9806 df-seqfrec 10625 df-exp 10716 df-cj 11238 df-re 11239 df-im 11240 df-rsqrt 11394 df-abs 11395 df-dvds 12184 |
| This theorem is referenced by: bezoutlemeu 12413 |
| Copyright terms: Public domain | W3C validator |