| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > bezoutlemmo | GIF version | ||
| Description: Lemma for Bézout's identity. There is at most one nonnegative integer meeting the greatest common divisor condition. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.) | 
| Ref | Expression | 
|---|---|
| bezoutlemgcd.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) | 
| bezoutlemgcd.2 | ⊢ (𝜑 → 𝐵 ∈ ℤ) | 
| bezoutlemgcd.3 | ⊢ (𝜑 → 𝐷 ∈ ℕ0) | 
| bezoutlemgcd.4 | ⊢ (𝜑 → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) | 
| bezoutlemmo.5 | ⊢ (𝜑 → 𝐸 ∈ ℕ0) | 
| bezoutlemmo.6 | ⊢ (𝜑 → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐸 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) | 
| Ref | Expression | 
|---|---|
| bezoutlemmo | ⊢ (𝜑 → 𝐷 = 𝐸) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bezoutlemgcd.3 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℕ0) | |
| 2 | bezoutlemmo.5 | . 2 ⊢ (𝜑 → 𝐸 ∈ ℕ0) | |
| 3 | 1 | nn0zd 9446 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℤ) | 
| 4 | iddvds 11969 | . . . 4 ⊢ (𝐷 ∈ ℤ → 𝐷 ∥ 𝐷) | |
| 5 | 3, 4 | syl 14 | . . 3 ⊢ (𝜑 → 𝐷 ∥ 𝐷) | 
| 6 | breq1 4036 | . . . . 5 ⊢ (𝑧 = 𝐷 → (𝑧 ∥ 𝐷 ↔ 𝐷 ∥ 𝐷)) | |
| 7 | breq1 4036 | . . . . 5 ⊢ (𝑧 = 𝐷 → (𝑧 ∥ 𝐸 ↔ 𝐷 ∥ 𝐸)) | |
| 8 | 6, 7 | bibi12d 235 | . . . 4 ⊢ (𝑧 = 𝐷 → ((𝑧 ∥ 𝐷 ↔ 𝑧 ∥ 𝐸) ↔ (𝐷 ∥ 𝐷 ↔ 𝐷 ∥ 𝐸))) | 
| 9 | bezoutlemgcd.4 | . . . . . 6 ⊢ (𝜑 → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) | |
| 10 | bezoutlemmo.6 | . . . . . 6 ⊢ (𝜑 → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐸 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) | |
| 11 | r19.26 2623 | . . . . . 6 ⊢ (∀𝑧 ∈ ℤ ((𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ (𝑧 ∥ 𝐸 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) ↔ (∀𝑧 ∈ ℤ (𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐸 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) | |
| 12 | 9, 10, 11 | sylanbrc 417 | . . . . 5 ⊢ (𝜑 → ∀𝑧 ∈ ℤ ((𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ (𝑧 ∥ 𝐸 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) | 
| 13 | biantr 954 | . . . . . 6 ⊢ (((𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ (𝑧 ∥ 𝐸 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) → (𝑧 ∥ 𝐷 ↔ 𝑧 ∥ 𝐸)) | |
| 14 | 13 | ralimi 2560 | . . . . 5 ⊢ (∀𝑧 ∈ ℤ ((𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ (𝑧 ∥ 𝐸 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐷 ↔ 𝑧 ∥ 𝐸)) | 
| 15 | 12, 14 | syl 14 | . . . 4 ⊢ (𝜑 → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐷 ↔ 𝑧 ∥ 𝐸)) | 
| 16 | 8, 15, 3 | rspcdva 2873 | . . 3 ⊢ (𝜑 → (𝐷 ∥ 𝐷 ↔ 𝐷 ∥ 𝐸)) | 
| 17 | 5, 16 | mpbid 147 | . 2 ⊢ (𝜑 → 𝐷 ∥ 𝐸) | 
| 18 | 2 | nn0zd 9446 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ ℤ) | 
| 19 | iddvds 11969 | . . . 4 ⊢ (𝐸 ∈ ℤ → 𝐸 ∥ 𝐸) | |
| 20 | 18, 19 | syl 14 | . . 3 ⊢ (𝜑 → 𝐸 ∥ 𝐸) | 
| 21 | breq1 4036 | . . . . 5 ⊢ (𝑧 = 𝐸 → (𝑧 ∥ 𝐷 ↔ 𝐸 ∥ 𝐷)) | |
| 22 | breq1 4036 | . . . . 5 ⊢ (𝑧 = 𝐸 → (𝑧 ∥ 𝐸 ↔ 𝐸 ∥ 𝐸)) | |
| 23 | 21, 22 | bibi12d 235 | . . . 4 ⊢ (𝑧 = 𝐸 → ((𝑧 ∥ 𝐷 ↔ 𝑧 ∥ 𝐸) ↔ (𝐸 ∥ 𝐷 ↔ 𝐸 ∥ 𝐸))) | 
| 24 | 23, 15, 18 | rspcdva 2873 | . . 3 ⊢ (𝜑 → (𝐸 ∥ 𝐷 ↔ 𝐸 ∥ 𝐸)) | 
| 25 | 20, 24 | mpbird 167 | . 2 ⊢ (𝜑 → 𝐸 ∥ 𝐷) | 
| 26 | dvdseq 12013 | . 2 ⊢ (((𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0) ∧ (𝐷 ∥ 𝐸 ∧ 𝐸 ∥ 𝐷)) → 𝐷 = 𝐸) | |
| 27 | 1, 2, 17, 25, 26 | syl22anc 1250 | 1 ⊢ (𝜑 → 𝐷 = 𝐸) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∀wral 2475 class class class wbr 4033 ℕ0cn0 9249 ℤcz 9326 ∥ cdvds 11952 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-dvds 11953 | 
| This theorem is referenced by: bezoutlemeu 12174 | 
| Copyright terms: Public domain | W3C validator |