| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bezoutlemmo | GIF version | ||
| Description: Lemma for Bézout's identity. There is at most one nonnegative integer meeting the greatest common divisor condition. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.) |
| Ref | Expression |
|---|---|
| bezoutlemgcd.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| bezoutlemgcd.2 | ⊢ (𝜑 → 𝐵 ∈ ℤ) |
| bezoutlemgcd.3 | ⊢ (𝜑 → 𝐷 ∈ ℕ0) |
| bezoutlemgcd.4 | ⊢ (𝜑 → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) |
| bezoutlemmo.5 | ⊢ (𝜑 → 𝐸 ∈ ℕ0) |
| bezoutlemmo.6 | ⊢ (𝜑 → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐸 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) |
| Ref | Expression |
|---|---|
| bezoutlemmo | ⊢ (𝜑 → 𝐷 = 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bezoutlemgcd.3 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℕ0) | |
| 2 | bezoutlemmo.5 | . 2 ⊢ (𝜑 → 𝐸 ∈ ℕ0) | |
| 3 | 1 | nn0zd 9475 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℤ) |
| 4 | iddvds 12034 | . . . 4 ⊢ (𝐷 ∈ ℤ → 𝐷 ∥ 𝐷) | |
| 5 | 3, 4 | syl 14 | . . 3 ⊢ (𝜑 → 𝐷 ∥ 𝐷) |
| 6 | breq1 4046 | . . . . 5 ⊢ (𝑧 = 𝐷 → (𝑧 ∥ 𝐷 ↔ 𝐷 ∥ 𝐷)) | |
| 7 | breq1 4046 | . . . . 5 ⊢ (𝑧 = 𝐷 → (𝑧 ∥ 𝐸 ↔ 𝐷 ∥ 𝐸)) | |
| 8 | 6, 7 | bibi12d 235 | . . . 4 ⊢ (𝑧 = 𝐷 → ((𝑧 ∥ 𝐷 ↔ 𝑧 ∥ 𝐸) ↔ (𝐷 ∥ 𝐷 ↔ 𝐷 ∥ 𝐸))) |
| 9 | bezoutlemgcd.4 | . . . . . 6 ⊢ (𝜑 → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) | |
| 10 | bezoutlemmo.6 | . . . . . 6 ⊢ (𝜑 → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐸 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) | |
| 11 | r19.26 2631 | . . . . . 6 ⊢ (∀𝑧 ∈ ℤ ((𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ (𝑧 ∥ 𝐸 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) ↔ (∀𝑧 ∈ ℤ (𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐸 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) | |
| 12 | 9, 10, 11 | sylanbrc 417 | . . . . 5 ⊢ (𝜑 → ∀𝑧 ∈ ℤ ((𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ (𝑧 ∥ 𝐸 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) |
| 13 | biantr 954 | . . . . . 6 ⊢ (((𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ (𝑧 ∥ 𝐸 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) → (𝑧 ∥ 𝐷 ↔ 𝑧 ∥ 𝐸)) | |
| 14 | 13 | ralimi 2568 | . . . . 5 ⊢ (∀𝑧 ∈ ℤ ((𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ (𝑧 ∥ 𝐸 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐷 ↔ 𝑧 ∥ 𝐸)) |
| 15 | 12, 14 | syl 14 | . . . 4 ⊢ (𝜑 → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐷 ↔ 𝑧 ∥ 𝐸)) |
| 16 | 8, 15, 3 | rspcdva 2881 | . . 3 ⊢ (𝜑 → (𝐷 ∥ 𝐷 ↔ 𝐷 ∥ 𝐸)) |
| 17 | 5, 16 | mpbid 147 | . 2 ⊢ (𝜑 → 𝐷 ∥ 𝐸) |
| 18 | 2 | nn0zd 9475 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ ℤ) |
| 19 | iddvds 12034 | . . . 4 ⊢ (𝐸 ∈ ℤ → 𝐸 ∥ 𝐸) | |
| 20 | 18, 19 | syl 14 | . . 3 ⊢ (𝜑 → 𝐸 ∥ 𝐸) |
| 21 | breq1 4046 | . . . . 5 ⊢ (𝑧 = 𝐸 → (𝑧 ∥ 𝐷 ↔ 𝐸 ∥ 𝐷)) | |
| 22 | breq1 4046 | . . . . 5 ⊢ (𝑧 = 𝐸 → (𝑧 ∥ 𝐸 ↔ 𝐸 ∥ 𝐸)) | |
| 23 | 21, 22 | bibi12d 235 | . . . 4 ⊢ (𝑧 = 𝐸 → ((𝑧 ∥ 𝐷 ↔ 𝑧 ∥ 𝐸) ↔ (𝐸 ∥ 𝐷 ↔ 𝐸 ∥ 𝐸))) |
| 24 | 23, 15, 18 | rspcdva 2881 | . . 3 ⊢ (𝜑 → (𝐸 ∥ 𝐷 ↔ 𝐸 ∥ 𝐸)) |
| 25 | 20, 24 | mpbird 167 | . 2 ⊢ (𝜑 → 𝐸 ∥ 𝐷) |
| 26 | dvdseq 12078 | . 2 ⊢ (((𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0) ∧ (𝐷 ∥ 𝐸 ∧ 𝐸 ∥ 𝐷)) → 𝐷 = 𝐸) | |
| 27 | 1, 2, 17, 25, 26 | syl22anc 1250 | 1 ⊢ (𝜑 → 𝐷 = 𝐸) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 ∀wral 2483 class class class wbr 4043 ℕ0cn0 9277 ℤcz 9354 ∥ cdvds 12017 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulrcl 8006 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-precex 8017 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-apti 8022 ax-pre-ltadd 8023 ax-pre-mulgt0 8024 ax-pre-mulext 8025 ax-arch 8026 ax-caucvg 8027 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-po 4341 df-iso 4342 df-iord 4411 df-on 4413 df-ilim 4414 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-recs 6381 df-frec 6467 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-reap 8630 df-ap 8637 df-div 8728 df-inn 9019 df-2 9077 df-3 9078 df-4 9079 df-n0 9278 df-z 9355 df-uz 9631 df-q 9723 df-rp 9758 df-seqfrec 10574 df-exp 10665 df-cj 11072 df-re 11073 df-im 11074 df-rsqrt 11228 df-abs 11229 df-dvds 12018 |
| This theorem is referenced by: bezoutlemeu 12247 |
| Copyright terms: Public domain | W3C validator |