![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > grpinvfng | GIF version |
Description: Functionality of the group inverse function. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
Ref | Expression |
---|---|
grpinvfn.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinvfn.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
grpinvfng | ⊢ (𝐺 ∈ 𝑉 → 𝑁 Fn 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvfn.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
2 | basfn 12679 | . . . . . . 7 ⊢ Base Fn V | |
3 | elex 2771 | . . . . . . 7 ⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | |
4 | funfvex 5572 | . . . . . . . 8 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
5 | 4 | funfni 5355 | . . . . . . 7 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
6 | 2, 3, 5 | sylancr 414 | . . . . . 6 ⊢ (𝐺 ∈ 𝑉 → (Base‘𝐺) ∈ V) |
7 | 1, 6 | eqeltrid 2280 | . . . . 5 ⊢ (𝐺 ∈ 𝑉 → 𝐵 ∈ V) |
8 | riotaexg 5878 | . . . . 5 ⊢ (𝐵 ∈ V → (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) ∈ V) | |
9 | 7, 8 | syl 14 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) ∈ V) |
10 | 9 | ralrimivw 2568 | . . 3 ⊢ (𝐺 ∈ 𝑉 → ∀𝑥 ∈ 𝐵 (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) ∈ V) |
11 | eqid 2193 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) | |
12 | 11 | fnmpt 5381 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) ∈ V → (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) Fn 𝐵) |
13 | 10, 12 | syl 14 | . 2 ⊢ (𝐺 ∈ 𝑉 → (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) Fn 𝐵) |
14 | eqid 2193 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
15 | eqid 2193 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
16 | grpinvfn.n | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
17 | 1, 14, 15, 16 | grpinvfvalg 13117 | . . 3 ⊢ (𝐺 ∈ 𝑉 → 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)))) |
18 | 17 | fneq1d 5345 | . 2 ⊢ (𝐺 ∈ 𝑉 → (𝑁 Fn 𝐵 ↔ (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) Fn 𝐵)) |
19 | 13, 18 | mpbird 167 | 1 ⊢ (𝐺 ∈ 𝑉 → 𝑁 Fn 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ∀wral 2472 Vcvv 2760 ↦ cmpt 4091 Fn wfn 5250 ‘cfv 5255 ℩crio 5873 (class class class)co 5919 Basecbs 12621 +gcplusg 12698 0gc0g 12870 invgcminusg 13076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-inn 8985 df-ndx 12624 df-slot 12625 df-base 12627 df-minusg 13079 |
This theorem is referenced by: isgrpinv 13129 mulgval 13195 mulgfng 13197 invrfvald 13621 |
Copyright terms: Public domain | W3C validator |