| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpinvfng | GIF version | ||
| Description: Functionality of the group inverse function. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| grpinvfn.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinvfn.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvfng | ⊢ (𝐺 ∈ 𝑉 → 𝑁 Fn 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvfn.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | basfn 13057 | . . . . . . 7 ⊢ Base Fn V | |
| 3 | elex 2791 | . . . . . . 7 ⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | |
| 4 | funfvex 5620 | . . . . . . . 8 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
| 5 | 4 | funfni 5399 | . . . . . . 7 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
| 6 | 2, 3, 5 | sylancr 414 | . . . . . 6 ⊢ (𝐺 ∈ 𝑉 → (Base‘𝐺) ∈ V) |
| 7 | 1, 6 | eqeltrid 2296 | . . . . 5 ⊢ (𝐺 ∈ 𝑉 → 𝐵 ∈ V) |
| 8 | riotaexg 5931 | . . . . 5 ⊢ (𝐵 ∈ V → (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) ∈ V) | |
| 9 | 7, 8 | syl 14 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) ∈ V) |
| 10 | 9 | ralrimivw 2584 | . . 3 ⊢ (𝐺 ∈ 𝑉 → ∀𝑥 ∈ 𝐵 (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) ∈ V) |
| 11 | eqid 2209 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) | |
| 12 | 11 | fnmpt 5426 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) ∈ V → (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) Fn 𝐵) |
| 13 | 10, 12 | syl 14 | . 2 ⊢ (𝐺 ∈ 𝑉 → (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) Fn 𝐵) |
| 14 | eqid 2209 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 15 | eqid 2209 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 16 | grpinvfn.n | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
| 17 | 1, 14, 15, 16 | grpinvfvalg 13541 | . . 3 ⊢ (𝐺 ∈ 𝑉 → 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)))) |
| 18 | 17 | fneq1d 5387 | . 2 ⊢ (𝐺 ∈ 𝑉 → (𝑁 Fn 𝐵 ↔ (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) Fn 𝐵)) |
| 19 | 13, 18 | mpbird 167 | 1 ⊢ (𝐺 ∈ 𝑉 → 𝑁 Fn 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 ∀wral 2488 Vcvv 2779 ↦ cmpt 4124 Fn wfn 5289 ‘cfv 5294 ℩crio 5926 (class class class)co 5974 Basecbs 12998 +gcplusg 13076 0gc0g 13255 invgcminusg 13500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-cnex 8058 ax-resscn 8059 ax-1re 8061 ax-addrcl 8064 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-inn 9079 df-ndx 13001 df-slot 13002 df-base 13004 df-minusg 13503 |
| This theorem is referenced by: isgrpinv 13553 mulgval 13625 mulgfng 13627 invrfvald 14051 |
| Copyright terms: Public domain | W3C validator |