Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > grpinvfng | GIF version |
Description: Functionality of the group inverse function. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
Ref | Expression |
---|---|
grpinvfn.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinvfn.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
grpinvfng | ⊢ (𝐺 ∈ 𝑉 → 𝑁 Fn 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvfn.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
2 | basfn 12473 | . . . . . . 7 ⊢ Base Fn V | |
3 | elex 2741 | . . . . . . 7 ⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | |
4 | funfvex 5513 | . . . . . . . 8 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
5 | 4 | funfni 5298 | . . . . . . 7 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
6 | 2, 3, 5 | sylancr 412 | . . . . . 6 ⊢ (𝐺 ∈ 𝑉 → (Base‘𝐺) ∈ V) |
7 | 1, 6 | eqeltrid 2257 | . . . . 5 ⊢ (𝐺 ∈ 𝑉 → 𝐵 ∈ V) |
8 | riotaexg 5813 | . . . . 5 ⊢ (𝐵 ∈ V → (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) ∈ V) | |
9 | 7, 8 | syl 14 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) ∈ V) |
10 | 9 | ralrimivw 2544 | . . 3 ⊢ (𝐺 ∈ 𝑉 → ∀𝑥 ∈ 𝐵 (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) ∈ V) |
11 | eqid 2170 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) | |
12 | 11 | fnmpt 5324 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) ∈ V → (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) Fn 𝐵) |
13 | 10, 12 | syl 14 | . 2 ⊢ (𝐺 ∈ 𝑉 → (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) Fn 𝐵) |
14 | eqid 2170 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
15 | eqid 2170 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
16 | grpinvfn.n | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
17 | 1, 14, 15, 16 | grpinvfvalg 12745 | . . 3 ⊢ (𝐺 ∈ 𝑉 → 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)))) |
18 | 17 | fneq1d 5288 | . 2 ⊢ (𝐺 ∈ 𝑉 → (𝑁 Fn 𝐵 ↔ (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) Fn 𝐵)) |
19 | 13, 18 | mpbird 166 | 1 ⊢ (𝐺 ∈ 𝑉 → 𝑁 Fn 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 ∀wral 2448 Vcvv 2730 ↦ cmpt 4050 Fn wfn 5193 ‘cfv 5198 ℩crio 5808 (class class class)co 5853 Basecbs 12416 +gcplusg 12480 0gc0g 12596 invgcminusg 12709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-inn 8879 df-ndx 12419 df-slot 12420 df-base 12422 df-minusg 12712 |
This theorem is referenced by: isgrpinv 12756 |
Copyright terms: Public domain | W3C validator |