ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvfng GIF version

Theorem grpinvfng 13420
Description: Functionality of the group inverse function. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
grpinvfn.b 𝐵 = (Base‘𝐺)
grpinvfn.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvfng (𝐺𝑉𝑁 Fn 𝐵)

Proof of Theorem grpinvfng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpinvfn.b . . . . . 6 𝐵 = (Base‘𝐺)
2 basfn 12934 . . . . . . 7 Base Fn V
3 elex 2784 . . . . . . 7 (𝐺𝑉𝐺 ∈ V)
4 funfvex 5600 . . . . . . . 8 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
54funfni 5381 . . . . . . 7 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
62, 3, 5sylancr 414 . . . . . 6 (𝐺𝑉 → (Base‘𝐺) ∈ V)
71, 6eqeltrid 2293 . . . . 5 (𝐺𝑉𝐵 ∈ V)
8 riotaexg 5910 . . . . 5 (𝐵 ∈ V → (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺)) ∈ V)
97, 8syl 14 . . . 4 (𝐺𝑉 → (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺)) ∈ V)
109ralrimivw 2581 . . 3 (𝐺𝑉 → ∀𝑥𝐵 (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺)) ∈ V)
11 eqid 2206 . . . 4 (𝑥𝐵 ↦ (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺))) = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺)))
1211fnmpt 5408 . . 3 (∀𝑥𝐵 (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺)) ∈ V → (𝑥𝐵 ↦ (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺))) Fn 𝐵)
1310, 12syl 14 . 2 (𝐺𝑉 → (𝑥𝐵 ↦ (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺))) Fn 𝐵)
14 eqid 2206 . . . 4 (+g𝐺) = (+g𝐺)
15 eqid 2206 . . . 4 (0g𝐺) = (0g𝐺)
16 grpinvfn.n . . . 4 𝑁 = (invg𝐺)
171, 14, 15, 16grpinvfvalg 13418 . . 3 (𝐺𝑉𝑁 = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺))))
1817fneq1d 5369 . 2 (𝐺𝑉 → (𝑁 Fn 𝐵 ↔ (𝑥𝐵 ↦ (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺))) Fn 𝐵))
1913, 18mpbird 167 1 (𝐺𝑉𝑁 Fn 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  wral 2485  Vcvv 2773  cmpt 4109   Fn wfn 5271  cfv 5276  crio 5905  (class class class)co 5951  Basecbs 12876  +gcplusg 12953  0gc0g 13132  invgcminusg 13377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-cnex 8023  ax-resscn 8024  ax-1re 8026  ax-addrcl 8029
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-inn 9044  df-ndx 12879  df-slot 12880  df-base 12882  df-minusg 13380
This theorem is referenced by:  isgrpinv  13430  mulgval  13502  mulgfng  13504  invrfvald  13928
  Copyright terms: Public domain W3C validator