| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpinvfng | GIF version | ||
| Description: Functionality of the group inverse function. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| grpinvfn.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinvfn.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvfng | ⊢ (𝐺 ∈ 𝑉 → 𝑁 Fn 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvfn.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | basfn 12934 | . . . . . . 7 ⊢ Base Fn V | |
| 3 | elex 2784 | . . . . . . 7 ⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | |
| 4 | funfvex 5600 | . . . . . . . 8 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
| 5 | 4 | funfni 5381 | . . . . . . 7 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
| 6 | 2, 3, 5 | sylancr 414 | . . . . . 6 ⊢ (𝐺 ∈ 𝑉 → (Base‘𝐺) ∈ V) |
| 7 | 1, 6 | eqeltrid 2293 | . . . . 5 ⊢ (𝐺 ∈ 𝑉 → 𝐵 ∈ V) |
| 8 | riotaexg 5910 | . . . . 5 ⊢ (𝐵 ∈ V → (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) ∈ V) | |
| 9 | 7, 8 | syl 14 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) ∈ V) |
| 10 | 9 | ralrimivw 2581 | . . 3 ⊢ (𝐺 ∈ 𝑉 → ∀𝑥 ∈ 𝐵 (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) ∈ V) |
| 11 | eqid 2206 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) | |
| 12 | 11 | fnmpt 5408 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) ∈ V → (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) Fn 𝐵) |
| 13 | 10, 12 | syl 14 | . 2 ⊢ (𝐺 ∈ 𝑉 → (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) Fn 𝐵) |
| 14 | eqid 2206 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 15 | eqid 2206 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 16 | grpinvfn.n | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
| 17 | 1, 14, 15, 16 | grpinvfvalg 13418 | . . 3 ⊢ (𝐺 ∈ 𝑉 → 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)))) |
| 18 | 17 | fneq1d 5369 | . 2 ⊢ (𝐺 ∈ 𝑉 → (𝑁 Fn 𝐵 ↔ (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) Fn 𝐵)) |
| 19 | 13, 18 | mpbird 167 | 1 ⊢ (𝐺 ∈ 𝑉 → 𝑁 Fn 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ∀wral 2485 Vcvv 2773 ↦ cmpt 4109 Fn wfn 5271 ‘cfv 5276 ℩crio 5905 (class class class)co 5951 Basecbs 12876 +gcplusg 12953 0gc0g 13132 invgcminusg 13377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-cnex 8023 ax-resscn 8024 ax-1re 8026 ax-addrcl 8029 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-inn 9044 df-ndx 12879 df-slot 12880 df-base 12882 df-minusg 13380 |
| This theorem is referenced by: isgrpinv 13430 mulgval 13502 mulgfng 13504 invrfvald 13928 |
| Copyright terms: Public domain | W3C validator |