ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvfng GIF version

Theorem grpinvfng 13176
Description: Functionality of the group inverse function. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
grpinvfn.b 𝐵 = (Base‘𝐺)
grpinvfn.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvfng (𝐺𝑉𝑁 Fn 𝐵)

Proof of Theorem grpinvfng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpinvfn.b . . . . . 6 𝐵 = (Base‘𝐺)
2 basfn 12736 . . . . . . 7 Base Fn V
3 elex 2774 . . . . . . 7 (𝐺𝑉𝐺 ∈ V)
4 funfvex 5575 . . . . . . . 8 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
54funfni 5358 . . . . . . 7 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
62, 3, 5sylancr 414 . . . . . 6 (𝐺𝑉 → (Base‘𝐺) ∈ V)
71, 6eqeltrid 2283 . . . . 5 (𝐺𝑉𝐵 ∈ V)
8 riotaexg 5881 . . . . 5 (𝐵 ∈ V → (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺)) ∈ V)
97, 8syl 14 . . . 4 (𝐺𝑉 → (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺)) ∈ V)
109ralrimivw 2571 . . 3 (𝐺𝑉 → ∀𝑥𝐵 (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺)) ∈ V)
11 eqid 2196 . . . 4 (𝑥𝐵 ↦ (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺))) = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺)))
1211fnmpt 5384 . . 3 (∀𝑥𝐵 (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺)) ∈ V → (𝑥𝐵 ↦ (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺))) Fn 𝐵)
1310, 12syl 14 . 2 (𝐺𝑉 → (𝑥𝐵 ↦ (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺))) Fn 𝐵)
14 eqid 2196 . . . 4 (+g𝐺) = (+g𝐺)
15 eqid 2196 . . . 4 (0g𝐺) = (0g𝐺)
16 grpinvfn.n . . . 4 𝑁 = (invg𝐺)
171, 14, 15, 16grpinvfvalg 13174 . . 3 (𝐺𝑉𝑁 = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺))))
1817fneq1d 5348 . 2 (𝐺𝑉 → (𝑁 Fn 𝐵 ↔ (𝑥𝐵 ↦ (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺))) Fn 𝐵))
1913, 18mpbird 167 1 (𝐺𝑉𝑁 Fn 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  wral 2475  Vcvv 2763  cmpt 4094   Fn wfn 5253  cfv 5258  crio 5876  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  0gc0g 12927  invgcminusg 13133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-inn 8991  df-ndx 12681  df-slot 12682  df-base 12684  df-minusg 13136
This theorem is referenced by:  isgrpinv  13186  mulgval  13252  mulgfng  13254  invrfvald  13678
  Copyright terms: Public domain W3C validator