ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvfng GIF version

Theorem grpinvfng 12747
Description: Functionality of the group inverse function. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
grpinvfn.b 𝐵 = (Base‘𝐺)
grpinvfn.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvfng (𝐺𝑉𝑁 Fn 𝐵)

Proof of Theorem grpinvfng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpinvfn.b . . . . . 6 𝐵 = (Base‘𝐺)
2 basfn 12473 . . . . . . 7 Base Fn V
3 elex 2741 . . . . . . 7 (𝐺𝑉𝐺 ∈ V)
4 funfvex 5513 . . . . . . . 8 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
54funfni 5298 . . . . . . 7 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
62, 3, 5sylancr 412 . . . . . 6 (𝐺𝑉 → (Base‘𝐺) ∈ V)
71, 6eqeltrid 2257 . . . . 5 (𝐺𝑉𝐵 ∈ V)
8 riotaexg 5813 . . . . 5 (𝐵 ∈ V → (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺)) ∈ V)
97, 8syl 14 . . . 4 (𝐺𝑉 → (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺)) ∈ V)
109ralrimivw 2544 . . 3 (𝐺𝑉 → ∀𝑥𝐵 (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺)) ∈ V)
11 eqid 2170 . . . 4 (𝑥𝐵 ↦ (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺))) = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺)))
1211fnmpt 5324 . . 3 (∀𝑥𝐵 (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺)) ∈ V → (𝑥𝐵 ↦ (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺))) Fn 𝐵)
1310, 12syl 14 . 2 (𝐺𝑉 → (𝑥𝐵 ↦ (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺))) Fn 𝐵)
14 eqid 2170 . . . 4 (+g𝐺) = (+g𝐺)
15 eqid 2170 . . . 4 (0g𝐺) = (0g𝐺)
16 grpinvfn.n . . . 4 𝑁 = (invg𝐺)
171, 14, 15, 16grpinvfvalg 12745 . . 3 (𝐺𝑉𝑁 = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺))))
1817fneq1d 5288 . 2 (𝐺𝑉 → (𝑁 Fn 𝐵 ↔ (𝑥𝐵 ↦ (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺))) Fn 𝐵))
1913, 18mpbird 166 1 (𝐺𝑉𝑁 Fn 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  wral 2448  Vcvv 2730  cmpt 4050   Fn wfn 5193  cfv 5198  crio 5808  (class class class)co 5853  Basecbs 12416  +gcplusg 12480  0gc0g 12596  invgcminusg 12709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-inn 8879  df-ndx 12419  df-slot 12420  df-base 12422  df-minusg 12712
This theorem is referenced by:  isgrpinv  12756
  Copyright terms: Public domain W3C validator