ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvfng GIF version

Theorem grpinvfng 13119
Description: Functionality of the group inverse function. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
grpinvfn.b 𝐵 = (Base‘𝐺)
grpinvfn.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvfng (𝐺𝑉𝑁 Fn 𝐵)

Proof of Theorem grpinvfng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpinvfn.b . . . . . 6 𝐵 = (Base‘𝐺)
2 basfn 12679 . . . . . . 7 Base Fn V
3 elex 2771 . . . . . . 7 (𝐺𝑉𝐺 ∈ V)
4 funfvex 5572 . . . . . . . 8 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
54funfni 5355 . . . . . . 7 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
62, 3, 5sylancr 414 . . . . . 6 (𝐺𝑉 → (Base‘𝐺) ∈ V)
71, 6eqeltrid 2280 . . . . 5 (𝐺𝑉𝐵 ∈ V)
8 riotaexg 5878 . . . . 5 (𝐵 ∈ V → (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺)) ∈ V)
97, 8syl 14 . . . 4 (𝐺𝑉 → (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺)) ∈ V)
109ralrimivw 2568 . . 3 (𝐺𝑉 → ∀𝑥𝐵 (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺)) ∈ V)
11 eqid 2193 . . . 4 (𝑥𝐵 ↦ (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺))) = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺)))
1211fnmpt 5381 . . 3 (∀𝑥𝐵 (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺)) ∈ V → (𝑥𝐵 ↦ (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺))) Fn 𝐵)
1310, 12syl 14 . 2 (𝐺𝑉 → (𝑥𝐵 ↦ (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺))) Fn 𝐵)
14 eqid 2193 . . . 4 (+g𝐺) = (+g𝐺)
15 eqid 2193 . . . 4 (0g𝐺) = (0g𝐺)
16 grpinvfn.n . . . 4 𝑁 = (invg𝐺)
171, 14, 15, 16grpinvfvalg 13117 . . 3 (𝐺𝑉𝑁 = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺))))
1817fneq1d 5345 . 2 (𝐺𝑉 → (𝑁 Fn 𝐵 ↔ (𝑥𝐵 ↦ (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺))) Fn 𝐵))
1913, 18mpbird 167 1 (𝐺𝑉𝑁 Fn 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  wral 2472  Vcvv 2760  cmpt 4091   Fn wfn 5250  cfv 5255  crio 5873  (class class class)co 5919  Basecbs 12621  +gcplusg 12698  0gc0g 12870  invgcminusg 13076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-inn 8985  df-ndx 12624  df-slot 12625  df-base 12627  df-minusg 13079
This theorem is referenced by:  isgrpinv  13129  mulgval  13195  mulgfng  13197  invrfvald  13621
  Copyright terms: Public domain W3C validator