ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvex GIF version

Theorem fvex 5649
Description: Evaluating a set function at a set exists. (Contributed by Mario Carneiro and Jim Kingdon, 28-May-2019.)
Hypotheses
Ref Expression
fvex.1 𝐹𝑉
fvex.2 𝐴𝑊
Assertion
Ref Expression
fvex (𝐹𝐴) ∈ V

Proof of Theorem fvex
StepHypRef Expression
1 fvex.1 . 2 𝐹𝑉
2 fvex.2 . 2 𝐴𝑊
3 fvexg 5648 . 2 ((𝐹𝑉𝐴𝑊) → (𝐹𝐴) ∈ V)
41, 2, 3mp2an 426 1 (𝐹𝐴) ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2200  Vcvv 2799  cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-cnv 4727  df-dm 4729  df-rn 4730  df-iota 5278  df-fv 5326
This theorem is referenced by:  uchoice  6289  rdgtfr  6526  rdgruledefgg  6527  mapsnf1o2  6851  ixpiinm  6879  mapsnen  6972  xpdom2  6998  mapxpen  7017  xpmapenlem  7018  phplem4  7024  ac6sfi  7068  fiintim  7101  pr2cv1  7376  acfun  7397  ccfunen  7458  ioof  10175  frec2uzrand  10635  frec2uzf1od  10636  frecfzennn  10656  hashinfom  11008  fsum3  11906  slotslfn  13066  ptex  13305  prdsvallem  13313  prdsval  13314  znval  14608  elply2  15417
  Copyright terms: Public domain W3C validator