![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvex | GIF version |
Description: Evaluating a set function at a set exists. (Contributed by Mario Carneiro and Jim Kingdon, 28-May-2019.) |
Ref | Expression |
---|---|
fvex.1 | ⊢ 𝐹 ∈ 𝑉 |
fvex.2 | ⊢ 𝐴 ∈ 𝑊 |
Ref | Expression |
---|---|
fvex | ⊢ (𝐹‘𝐴) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex.1 | . 2 ⊢ 𝐹 ∈ 𝑉 | |
2 | fvex.2 | . 2 ⊢ 𝐴 ∈ 𝑊 | |
3 | fvexg 5574 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐹‘𝐴) ∈ V) | |
4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐹‘𝐴) ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 Vcvv 2760 ‘cfv 5255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-cnv 4668 df-dm 4670 df-rn 4671 df-iota 5216 df-fv 5263 |
This theorem is referenced by: uchoice 6192 rdgtfr 6429 rdgruledefgg 6430 mapsnf1o2 6752 ixpiinm 6780 mapsnen 6867 xpdom2 6887 mapxpen 6906 xpmapenlem 6907 phplem4 6913 ac6sfi 6956 fiintim 6987 acfun 7269 ccfunen 7326 ioof 10040 frec2uzrand 10479 frec2uzf1od 10480 frecfzennn 10500 hashinfom 10852 fsum3 11533 slotslfn 12647 ptex 12878 znval 14135 elply2 14914 |
Copyright terms: Public domain | W3C validator |