Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvex | GIF version |
Description: Evaluating a set function at a set exists. (Contributed by Mario Carneiro and Jim Kingdon, 28-May-2019.) |
Ref | Expression |
---|---|
fvex.1 | ⊢ 𝐹 ∈ 𝑉 |
fvex.2 | ⊢ 𝐴 ∈ 𝑊 |
Ref | Expression |
---|---|
fvex | ⊢ (𝐹‘𝐴) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex.1 | . 2 ⊢ 𝐹 ∈ 𝑉 | |
2 | fvex.2 | . 2 ⊢ 𝐴 ∈ 𝑊 | |
3 | fvexg 5505 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐹‘𝐴) ∈ V) | |
4 | 1, 2, 3 | mp2an 423 | 1 ⊢ (𝐹‘𝐴) ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 Vcvv 2726 ‘cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-cnv 4612 df-dm 4614 df-rn 4615 df-iota 5153 df-fv 5196 |
This theorem is referenced by: rdgtfr 6342 rdgruledefgg 6343 mapsnf1o2 6662 ixpiinm 6690 mapsnen 6777 xpdom2 6797 mapxpen 6814 xpmapenlem 6815 phplem4 6821 ac6sfi 6864 fiintim 6894 acfun 7163 ccfunen 7205 ioof 9907 frec2uzrand 10340 frec2uzf1od 10341 frecfzennn 10361 hashinfom 10691 fsum3 11328 slotslfn 12420 |
Copyright terms: Public domain | W3C validator |