| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvex | GIF version | ||
| Description: Evaluating a set function at a set exists. (Contributed by Mario Carneiro and Jim Kingdon, 28-May-2019.) |
| Ref | Expression |
|---|---|
| fvex.1 | ⊢ 𝐹 ∈ 𝑉 |
| fvex.2 | ⊢ 𝐴 ∈ 𝑊 |
| Ref | Expression |
|---|---|
| fvex | ⊢ (𝐹‘𝐴) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex.1 | . 2 ⊢ 𝐹 ∈ 𝑉 | |
| 2 | fvex.2 | . 2 ⊢ 𝐴 ∈ 𝑊 | |
| 3 | fvexg 5602 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐹‘𝐴) ∈ V) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐹‘𝐴) ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 Vcvv 2773 ‘cfv 5276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-cnv 4687 df-dm 4689 df-rn 4690 df-iota 5237 df-fv 5284 |
| This theorem is referenced by: uchoice 6230 rdgtfr 6467 rdgruledefgg 6468 mapsnf1o2 6790 ixpiinm 6818 mapsnen 6910 xpdom2 6933 mapxpen 6952 xpmapenlem 6953 phplem4 6959 ac6sfi 7002 fiintim 7035 acfun 7326 ccfunen 7383 ioof 10100 frec2uzrand 10557 frec2uzf1od 10558 frecfzennn 10578 hashinfom 10930 fsum3 11742 slotslfn 12902 ptex 13140 prdsvallem 13148 prdsval 13149 znval 14442 elply2 15251 |
| Copyright terms: Public domain | W3C validator |