| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvex | GIF version | ||
| Description: Evaluating a set function at a set exists. (Contributed by Mario Carneiro and Jim Kingdon, 28-May-2019.) |
| Ref | Expression |
|---|---|
| fvex.1 | ⊢ 𝐹 ∈ 𝑉 |
| fvex.2 | ⊢ 𝐴 ∈ 𝑊 |
| Ref | Expression |
|---|---|
| fvex | ⊢ (𝐹‘𝐴) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex.1 | . 2 ⊢ 𝐹 ∈ 𝑉 | |
| 2 | fvex.2 | . 2 ⊢ 𝐴 ∈ 𝑊 | |
| 3 | fvexg 5622 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐹‘𝐴) ∈ V) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐹‘𝐴) ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2180 Vcvv 2779 ‘cfv 5294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-cnv 4704 df-dm 4706 df-rn 4707 df-iota 5254 df-fv 5302 |
| This theorem is referenced by: uchoice 6253 rdgtfr 6490 rdgruledefgg 6491 mapsnf1o2 6813 ixpiinm 6841 mapsnen 6934 xpdom2 6958 mapxpen 6977 xpmapenlem 6978 phplem4 6984 ac6sfi 7028 fiintim 7061 pr2cv1 7336 acfun 7357 ccfunen 7418 ioof 10135 frec2uzrand 10594 frec2uzf1od 10595 frecfzennn 10615 hashinfom 10967 fsum3 11864 slotslfn 13024 ptex 13263 prdsvallem 13271 prdsval 13272 znval 14565 elply2 15374 |
| Copyright terms: Public domain | W3C validator |