ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvex GIF version

Theorem fvex 5578
Description: Evaluating a set function at a set exists. (Contributed by Mario Carneiro and Jim Kingdon, 28-May-2019.)
Hypotheses
Ref Expression
fvex.1 𝐹𝑉
fvex.2 𝐴𝑊
Assertion
Ref Expression
fvex (𝐹𝐴) ∈ V

Proof of Theorem fvex
StepHypRef Expression
1 fvex.1 . 2 𝐹𝑉
2 fvex.2 . 2 𝐴𝑊
3 fvexg 5577 . 2 ((𝐹𝑉𝐴𝑊) → (𝐹𝐴) ∈ V)
41, 2, 3mp2an 426 1 (𝐹𝐴) ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2167  Vcvv 2763  cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-cnv 4671  df-dm 4673  df-rn 4674  df-iota 5219  df-fv 5266
This theorem is referenced by:  uchoice  6195  rdgtfr  6432  rdgruledefgg  6433  mapsnf1o2  6755  ixpiinm  6783  mapsnen  6870  xpdom2  6890  mapxpen  6909  xpmapenlem  6910  phplem4  6916  ac6sfi  6959  fiintim  6992  acfun  7274  ccfunen  7331  ioof  10046  frec2uzrand  10497  frec2uzf1od  10498  frecfzennn  10518  hashinfom  10870  fsum3  11552  slotslfn  12704  ptex  12935  znval  14192  elply2  14971
  Copyright terms: Public domain W3C validator