Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvex | GIF version |
Description: Evaluating a set function at a set exists. (Contributed by Mario Carneiro and Jim Kingdon, 28-May-2019.) |
Ref | Expression |
---|---|
fvex.1 | ⊢ 𝐹 ∈ 𝑉 |
fvex.2 | ⊢ 𝐴 ∈ 𝑊 |
Ref | Expression |
---|---|
fvex | ⊢ (𝐹‘𝐴) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex.1 | . 2 ⊢ 𝐹 ∈ 𝑉 | |
2 | fvex.2 | . 2 ⊢ 𝐴 ∈ 𝑊 | |
3 | fvexg 5515 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐹‘𝐴) ∈ V) | |
4 | 1, 2, 3 | mp2an 424 | 1 ⊢ (𝐹‘𝐴) ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 Vcvv 2730 ‘cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-cnv 4619 df-dm 4621 df-rn 4622 df-iota 5160 df-fv 5206 |
This theorem is referenced by: rdgtfr 6353 rdgruledefgg 6354 mapsnf1o2 6674 ixpiinm 6702 mapsnen 6789 xpdom2 6809 mapxpen 6826 xpmapenlem 6827 phplem4 6833 ac6sfi 6876 fiintim 6906 acfun 7184 ccfunen 7226 ioof 9928 frec2uzrand 10361 frec2uzf1od 10362 frecfzennn 10382 hashinfom 10712 fsum3 11350 slotslfn 12442 |
Copyright terms: Public domain | W3C validator |