![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvex | GIF version |
Description: Evaluating a set function at a set exists. (Contributed by Mario Carneiro and Jim Kingdon, 28-May-2019.) |
Ref | Expression |
---|---|
fvex.1 | ⊢ 𝐹 ∈ 𝑉 |
fvex.2 | ⊢ 𝐴 ∈ 𝑊 |
Ref | Expression |
---|---|
fvex | ⊢ (𝐹‘𝐴) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex.1 | . 2 ⊢ 𝐹 ∈ 𝑉 | |
2 | fvex.2 | . 2 ⊢ 𝐴 ∈ 𝑊 | |
3 | fvexg 5359 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐹‘𝐴) ∈ V) | |
4 | 1, 2, 3 | mp2an 418 | 1 ⊢ (𝐹‘𝐴) ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1445 Vcvv 2633 ‘cfv 5049 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-v 2635 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-br 3868 df-opab 3922 df-cnv 4475 df-dm 4477 df-rn 4478 df-iota 5014 df-fv 5057 |
This theorem is referenced by: rdgtfr 6177 rdgruledefgg 6178 mapsnf1o2 6493 ixpiinm 6521 mapsnen 6608 xpdom2 6627 mapxpen 6644 xpmapenlem 6645 phplem4 6651 ac6sfi 6694 fiintim 6719 ioof 9537 frec2uzrand 9961 frec2uzf1od 9962 frecfzennn 9982 hashinfom 10317 fsum3 10946 slotslfn 11685 |
Copyright terms: Public domain | W3C validator |