ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvex GIF version

Theorem fvex 5603
Description: Evaluating a set function at a set exists. (Contributed by Mario Carneiro and Jim Kingdon, 28-May-2019.)
Hypotheses
Ref Expression
fvex.1 𝐹𝑉
fvex.2 𝐴𝑊
Assertion
Ref Expression
fvex (𝐹𝐴) ∈ V

Proof of Theorem fvex
StepHypRef Expression
1 fvex.1 . 2 𝐹𝑉
2 fvex.2 . 2 𝐴𝑊
3 fvexg 5602 . 2 ((𝐹𝑉𝐴𝑊) → (𝐹𝐴) ∈ V)
41, 2, 3mp2an 426 1 (𝐹𝐴) ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2177  Vcvv 2773  cfv 5276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-cnv 4687  df-dm 4689  df-rn 4690  df-iota 5237  df-fv 5284
This theorem is referenced by:  uchoice  6230  rdgtfr  6467  rdgruledefgg  6468  mapsnf1o2  6790  ixpiinm  6818  mapsnen  6910  xpdom2  6933  mapxpen  6952  xpmapenlem  6953  phplem4  6959  ac6sfi  7002  fiintim  7035  acfun  7326  ccfunen  7383  ioof  10100  frec2uzrand  10557  frec2uzf1od  10558  frecfzennn  10578  hashinfom  10930  fsum3  11742  slotslfn  12902  ptex  13140  prdsvallem  13148  prdsval  13149  znval  14442  elply2  15251
  Copyright terms: Public domain W3C validator