| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvex | GIF version | ||
| Description: Evaluating a set function at a set exists. (Contributed by Mario Carneiro and Jim Kingdon, 28-May-2019.) |
| Ref | Expression |
|---|---|
| fvex.1 | ⊢ 𝐹 ∈ 𝑉 |
| fvex.2 | ⊢ 𝐴 ∈ 𝑊 |
| Ref | Expression |
|---|---|
| fvex | ⊢ (𝐹‘𝐴) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex.1 | . 2 ⊢ 𝐹 ∈ 𝑉 | |
| 2 | fvex.2 | . 2 ⊢ 𝐴 ∈ 𝑊 | |
| 3 | fvexg 5577 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐹‘𝐴) ∈ V) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐹‘𝐴) ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 ‘cfv 5258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-cnv 4671 df-dm 4673 df-rn 4674 df-iota 5219 df-fv 5266 |
| This theorem is referenced by: uchoice 6195 rdgtfr 6432 rdgruledefgg 6433 mapsnf1o2 6755 ixpiinm 6783 mapsnen 6870 xpdom2 6890 mapxpen 6909 xpmapenlem 6910 phplem4 6916 ac6sfi 6959 fiintim 6992 acfun 7274 ccfunen 7331 ioof 10046 frec2uzrand 10497 frec2uzf1od 10498 frecfzennn 10518 hashinfom 10870 fsum3 11552 slotslfn 12704 ptex 12935 znval 14192 elply2 14971 |
| Copyright terms: Public domain | W3C validator |