| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvex | GIF version | ||
| Description: Evaluating a set function at a set exists. (Contributed by Mario Carneiro and Jim Kingdon, 28-May-2019.) |
| Ref | Expression |
|---|---|
| fvex.1 | ⊢ 𝐹 ∈ 𝑉 |
| fvex.2 | ⊢ 𝐴 ∈ 𝑊 |
| Ref | Expression |
|---|---|
| fvex | ⊢ (𝐹‘𝐴) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex.1 | . 2 ⊢ 𝐹 ∈ 𝑉 | |
| 2 | fvex.2 | . 2 ⊢ 𝐴 ∈ 𝑊 | |
| 3 | fvexg 5580 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐹‘𝐴) ∈ V) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐹‘𝐴) ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 ‘cfv 5259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-cnv 4672 df-dm 4674 df-rn 4675 df-iota 5220 df-fv 5267 |
| This theorem is referenced by: uchoice 6204 rdgtfr 6441 rdgruledefgg 6442 mapsnf1o2 6764 ixpiinm 6792 mapsnen 6879 xpdom2 6899 mapxpen 6918 xpmapenlem 6919 phplem4 6925 ac6sfi 6968 fiintim 7001 acfun 7290 ccfunen 7347 ioof 10063 frec2uzrand 10514 frec2uzf1od 10515 frecfzennn 10535 hashinfom 10887 fsum3 11569 slotslfn 12729 ptex 12966 prdsvallem 12974 prdsval 12975 znval 14268 elply2 15055 |
| Copyright terms: Public domain | W3C validator |