ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnpdis GIF version

Theorem cnpdis 13827
Description: If 𝐴 is an isolated point in 𝑋 (or equivalently, the singleton {𝐴} is open in 𝑋), then every function is continuous at 𝐴. (Contributed by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
cnpdis (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ {𝐴} ∈ 𝐽) β†’ ((𝐽 CnP 𝐾)β€˜π΄) = (π‘Œ β†‘π‘š 𝑋))

Proof of Theorem cnpdis
Dummy variables π‘₯ 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplrl 535 . . . . . . . 8 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ ({𝐴} ∈ 𝐽 ∧ 𝑓:π‘‹βŸΆπ‘Œ)) ∧ (π‘₯ ∈ 𝐾 ∧ (π‘“β€˜π΄) ∈ π‘₯)) β†’ {𝐴} ∈ 𝐽)
2 simpll3 1038 . . . . . . . . 9 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ ({𝐴} ∈ 𝐽 ∧ 𝑓:π‘‹βŸΆπ‘Œ)) ∧ (π‘₯ ∈ 𝐾 ∧ (π‘“β€˜π΄) ∈ π‘₯)) β†’ 𝐴 ∈ 𝑋)
3 snidg 3623 . . . . . . . . 9 (𝐴 ∈ 𝑋 β†’ 𝐴 ∈ {𝐴})
42, 3syl 14 . . . . . . . 8 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ ({𝐴} ∈ 𝐽 ∧ 𝑓:π‘‹βŸΆπ‘Œ)) ∧ (π‘₯ ∈ 𝐾 ∧ (π‘“β€˜π΄) ∈ π‘₯)) β†’ 𝐴 ∈ {𝐴})
5 simprr 531 . . . . . . . . . 10 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ ({𝐴} ∈ 𝐽 ∧ 𝑓:π‘‹βŸΆπ‘Œ)) ∧ (π‘₯ ∈ 𝐾 ∧ (π‘“β€˜π΄) ∈ π‘₯)) β†’ (π‘“β€˜π΄) ∈ π‘₯)
6 simplrr 536 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ ({𝐴} ∈ 𝐽 ∧ 𝑓:π‘‹βŸΆπ‘Œ)) ∧ (π‘₯ ∈ 𝐾 ∧ (π‘“β€˜π΄) ∈ π‘₯)) β†’ 𝑓:π‘‹βŸΆπ‘Œ)
7 ffn 5367 . . . . . . . . . . 11 (𝑓:π‘‹βŸΆπ‘Œ β†’ 𝑓 Fn 𝑋)
8 elpreima 5637 . . . . . . . . . . 11 (𝑓 Fn 𝑋 β†’ (𝐴 ∈ (◑𝑓 β€œ π‘₯) ↔ (𝐴 ∈ 𝑋 ∧ (π‘“β€˜π΄) ∈ π‘₯)))
96, 7, 83syl 17 . . . . . . . . . 10 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ ({𝐴} ∈ 𝐽 ∧ 𝑓:π‘‹βŸΆπ‘Œ)) ∧ (π‘₯ ∈ 𝐾 ∧ (π‘“β€˜π΄) ∈ π‘₯)) β†’ (𝐴 ∈ (◑𝑓 β€œ π‘₯) ↔ (𝐴 ∈ 𝑋 ∧ (π‘“β€˜π΄) ∈ π‘₯)))
102, 5, 9mpbir2and 944 . . . . . . . . 9 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ ({𝐴} ∈ 𝐽 ∧ 𝑓:π‘‹βŸΆπ‘Œ)) ∧ (π‘₯ ∈ 𝐾 ∧ (π‘“β€˜π΄) ∈ π‘₯)) β†’ 𝐴 ∈ (◑𝑓 β€œ π‘₯))
1110snssd 3739 . . . . . . . 8 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ ({𝐴} ∈ 𝐽 ∧ 𝑓:π‘‹βŸΆπ‘Œ)) ∧ (π‘₯ ∈ 𝐾 ∧ (π‘“β€˜π΄) ∈ π‘₯)) β†’ {𝐴} βŠ† (◑𝑓 β€œ π‘₯))
12 eleq2 2241 . . . . . . . . . 10 (𝑦 = {𝐴} β†’ (𝐴 ∈ 𝑦 ↔ 𝐴 ∈ {𝐴}))
13 sseq1 3180 . . . . . . . . . 10 (𝑦 = {𝐴} β†’ (𝑦 βŠ† (◑𝑓 β€œ π‘₯) ↔ {𝐴} βŠ† (◑𝑓 β€œ π‘₯)))
1412, 13anbi12d 473 . . . . . . . . 9 (𝑦 = {𝐴} β†’ ((𝐴 ∈ 𝑦 ∧ 𝑦 βŠ† (◑𝑓 β€œ π‘₯)) ↔ (𝐴 ∈ {𝐴} ∧ {𝐴} βŠ† (◑𝑓 β€œ π‘₯))))
1514rspcev 2843 . . . . . . . 8 (({𝐴} ∈ 𝐽 ∧ (𝐴 ∈ {𝐴} ∧ {𝐴} βŠ† (◑𝑓 β€œ π‘₯))) β†’ βˆƒπ‘¦ ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ 𝑦 βŠ† (◑𝑓 β€œ π‘₯)))
161, 4, 11, 15syl12anc 1236 . . . . . . 7 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ ({𝐴} ∈ 𝐽 ∧ 𝑓:π‘‹βŸΆπ‘Œ)) ∧ (π‘₯ ∈ 𝐾 ∧ (π‘“β€˜π΄) ∈ π‘₯)) β†’ βˆƒπ‘¦ ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ 𝑦 βŠ† (◑𝑓 β€œ π‘₯)))
1716expr 375 . . . . . 6 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ ({𝐴} ∈ 𝐽 ∧ 𝑓:π‘‹βŸΆπ‘Œ)) ∧ π‘₯ ∈ 𝐾) β†’ ((π‘“β€˜π΄) ∈ π‘₯ β†’ βˆƒπ‘¦ ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ 𝑦 βŠ† (◑𝑓 β€œ π‘₯))))
1817ralrimiva 2550 . . . . 5 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ ({𝐴} ∈ 𝐽 ∧ 𝑓:π‘‹βŸΆπ‘Œ)) β†’ βˆ€π‘₯ ∈ 𝐾 ((π‘“β€˜π΄) ∈ π‘₯ β†’ βˆƒπ‘¦ ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ 𝑦 βŠ† (◑𝑓 β€œ π‘₯))))
1918expr 375 . . . 4 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ {𝐴} ∈ 𝐽) β†’ (𝑓:π‘‹βŸΆπ‘Œ β†’ βˆ€π‘₯ ∈ 𝐾 ((π‘“β€˜π΄) ∈ π‘₯ β†’ βˆƒπ‘¦ ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ 𝑦 βŠ† (◑𝑓 β€œ π‘₯)))))
2019pm4.71d 393 . . 3 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ {𝐴} ∈ 𝐽) β†’ (𝑓:π‘‹βŸΆπ‘Œ ↔ (𝑓:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝐾 ((π‘“β€˜π΄) ∈ π‘₯ β†’ βˆƒπ‘¦ ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ 𝑦 βŠ† (◑𝑓 β€œ π‘₯))))))
21 simpl2 1001 . . . . 5 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ {𝐴} ∈ 𝐽) β†’ 𝐾 ∈ (TopOnβ€˜π‘Œ))
22 toponmax 13610 . . . . 5 (𝐾 ∈ (TopOnβ€˜π‘Œ) β†’ π‘Œ ∈ 𝐾)
2321, 22syl 14 . . . 4 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ {𝐴} ∈ 𝐽) β†’ π‘Œ ∈ 𝐾)
24 simpl1 1000 . . . . 5 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ {𝐴} ∈ 𝐽) β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
25 toponmax 13610 . . . . 5 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝑋 ∈ 𝐽)
2624, 25syl 14 . . . 4 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ {𝐴} ∈ 𝐽) β†’ 𝑋 ∈ 𝐽)
2723, 26elmapd 6664 . . 3 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ {𝐴} ∈ 𝐽) β†’ (𝑓 ∈ (π‘Œ β†‘π‘š 𝑋) ↔ 𝑓:π‘‹βŸΆπ‘Œ))
28 iscnp3 13788 . . . 4 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) β†’ (𝑓 ∈ ((𝐽 CnP 𝐾)β€˜π΄) ↔ (𝑓:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝐾 ((π‘“β€˜π΄) ∈ π‘₯ β†’ βˆƒπ‘¦ ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ 𝑦 βŠ† (◑𝑓 β€œ π‘₯))))))
2928adantr 276 . . 3 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ {𝐴} ∈ 𝐽) β†’ (𝑓 ∈ ((𝐽 CnP 𝐾)β€˜π΄) ↔ (𝑓:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝐾 ((π‘“β€˜π΄) ∈ π‘₯ β†’ βˆƒπ‘¦ ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ 𝑦 βŠ† (◑𝑓 β€œ π‘₯))))))
3020, 27, 293bitr4rd 221 . 2 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ {𝐴} ∈ 𝐽) β†’ (𝑓 ∈ ((𝐽 CnP 𝐾)β€˜π΄) ↔ 𝑓 ∈ (π‘Œ β†‘π‘š 𝑋)))
3130eqrdv 2175 1 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ {𝐴} ∈ 𝐽) β†’ ((𝐽 CnP 𝐾)β€˜π΄) = (π‘Œ β†‘π‘š 𝑋))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   ∧ w3a 978   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455  βˆƒwrex 2456   βŠ† wss 3131  {csn 3594  β—‘ccnv 4627   β€œ cima 4631   Fn wfn 5213  βŸΆwf 5214  β€˜cfv 5218  (class class class)co 5877   β†‘π‘š cmap 6650  TopOnctopon 13595   CnP ccnp 13771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-map 6652  df-top 13583  df-topon 13596  df-cnp 13774
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator