| Step | Hyp | Ref
 | Expression | 
| 1 |   | simplrl 535 | 
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ({𝐴} ∈ 𝐽 ∧ 𝑓:𝑋⟶𝑌)) ∧ (𝑥 ∈ 𝐾 ∧ (𝑓‘𝐴) ∈ 𝑥)) → {𝐴} ∈ 𝐽) | 
| 2 |   | simpll3 1040 | 
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ({𝐴} ∈ 𝐽 ∧ 𝑓:𝑋⟶𝑌)) ∧ (𝑥 ∈ 𝐾 ∧ (𝑓‘𝐴) ∈ 𝑥)) → 𝐴 ∈ 𝑋) | 
| 3 |   | snidg 3651 | 
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑋 → 𝐴 ∈ {𝐴}) | 
| 4 | 2, 3 | syl 14 | 
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ({𝐴} ∈ 𝐽 ∧ 𝑓:𝑋⟶𝑌)) ∧ (𝑥 ∈ 𝐾 ∧ (𝑓‘𝐴) ∈ 𝑥)) → 𝐴 ∈ {𝐴}) | 
| 5 |   | simprr 531 | 
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ({𝐴} ∈ 𝐽 ∧ 𝑓:𝑋⟶𝑌)) ∧ (𝑥 ∈ 𝐾 ∧ (𝑓‘𝐴) ∈ 𝑥)) → (𝑓‘𝐴) ∈ 𝑥) | 
| 6 |   | simplrr 536 | 
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ({𝐴} ∈ 𝐽 ∧ 𝑓:𝑋⟶𝑌)) ∧ (𝑥 ∈ 𝐾 ∧ (𝑓‘𝐴) ∈ 𝑥)) → 𝑓:𝑋⟶𝑌) | 
| 7 |   | ffn 5407 | 
. . . . . . . . . . 11
⊢ (𝑓:𝑋⟶𝑌 → 𝑓 Fn 𝑋) | 
| 8 |   | elpreima 5681 | 
. . . . . . . . . . 11
⊢ (𝑓 Fn 𝑋 → (𝐴 ∈ (◡𝑓 “ 𝑥) ↔ (𝐴 ∈ 𝑋 ∧ (𝑓‘𝐴) ∈ 𝑥))) | 
| 9 | 6, 7, 8 | 3syl 17 | 
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ({𝐴} ∈ 𝐽 ∧ 𝑓:𝑋⟶𝑌)) ∧ (𝑥 ∈ 𝐾 ∧ (𝑓‘𝐴) ∈ 𝑥)) → (𝐴 ∈ (◡𝑓 “ 𝑥) ↔ (𝐴 ∈ 𝑋 ∧ (𝑓‘𝐴) ∈ 𝑥))) | 
| 10 | 2, 5, 9 | mpbir2and 946 | 
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ({𝐴} ∈ 𝐽 ∧ 𝑓:𝑋⟶𝑌)) ∧ (𝑥 ∈ 𝐾 ∧ (𝑓‘𝐴) ∈ 𝑥)) → 𝐴 ∈ (◡𝑓 “ 𝑥)) | 
| 11 | 10 | snssd 3767 | 
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ({𝐴} ∈ 𝐽 ∧ 𝑓:𝑋⟶𝑌)) ∧ (𝑥 ∈ 𝐾 ∧ (𝑓‘𝐴) ∈ 𝑥)) → {𝐴} ⊆ (◡𝑓 “ 𝑥)) | 
| 12 |   | eleq2 2260 | 
. . . . . . . . . 10
⊢ (𝑦 = {𝐴} → (𝐴 ∈ 𝑦 ↔ 𝐴 ∈ {𝐴})) | 
| 13 |   | sseq1 3206 | 
. . . . . . . . . 10
⊢ (𝑦 = {𝐴} → (𝑦 ⊆ (◡𝑓 “ 𝑥) ↔ {𝐴} ⊆ (◡𝑓 “ 𝑥))) | 
| 14 | 12, 13 | anbi12d 473 | 
. . . . . . . . 9
⊢ (𝑦 = {𝐴} → ((𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ (◡𝑓 “ 𝑥)) ↔ (𝐴 ∈ {𝐴} ∧ {𝐴} ⊆ (◡𝑓 “ 𝑥)))) | 
| 15 | 14 | rspcev 2868 | 
. . . . . . . 8
⊢ (({𝐴} ∈ 𝐽 ∧ (𝐴 ∈ {𝐴} ∧ {𝐴} ⊆ (◡𝑓 “ 𝑥))) → ∃𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ (◡𝑓 “ 𝑥))) | 
| 16 | 1, 4, 11, 15 | syl12anc 1247 | 
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ({𝐴} ∈ 𝐽 ∧ 𝑓:𝑋⟶𝑌)) ∧ (𝑥 ∈ 𝐾 ∧ (𝑓‘𝐴) ∈ 𝑥)) → ∃𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ (◡𝑓 “ 𝑥))) | 
| 17 | 16 | expr 375 | 
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ({𝐴} ∈ 𝐽 ∧ 𝑓:𝑋⟶𝑌)) ∧ 𝑥 ∈ 𝐾) → ((𝑓‘𝐴) ∈ 𝑥 → ∃𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ (◡𝑓 “ 𝑥)))) | 
| 18 | 17 | ralrimiva 2570 | 
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ ({𝐴} ∈ 𝐽 ∧ 𝑓:𝑋⟶𝑌)) → ∀𝑥 ∈ 𝐾 ((𝑓‘𝐴) ∈ 𝑥 → ∃𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ (◡𝑓 “ 𝑥)))) | 
| 19 | 18 | expr 375 | 
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ {𝐴} ∈ 𝐽) → (𝑓:𝑋⟶𝑌 → ∀𝑥 ∈ 𝐾 ((𝑓‘𝐴) ∈ 𝑥 → ∃𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ (◡𝑓 “ 𝑥))))) | 
| 20 | 19 | pm4.71d 393 | 
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ {𝐴} ∈ 𝐽) → (𝑓:𝑋⟶𝑌 ↔ (𝑓:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 ((𝑓‘𝐴) ∈ 𝑥 → ∃𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ (◡𝑓 “ 𝑥)))))) | 
| 21 |   | simpl2 1003 | 
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ {𝐴} ∈ 𝐽) → 𝐾 ∈ (TopOn‘𝑌)) | 
| 22 |   | toponmax 14261 | 
. . . . 5
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 ∈ 𝐾) | 
| 23 | 21, 22 | syl 14 | 
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ {𝐴} ∈ 𝐽) → 𝑌 ∈ 𝐾) | 
| 24 |   | simpl1 1002 | 
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ {𝐴} ∈ 𝐽) → 𝐽 ∈ (TopOn‘𝑋)) | 
| 25 |   | toponmax 14261 | 
. . . . 5
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | 
| 26 | 24, 25 | syl 14 | 
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ {𝐴} ∈ 𝐽) → 𝑋 ∈ 𝐽) | 
| 27 | 23, 26 | elmapd 6721 | 
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ {𝐴} ∈ 𝐽) → (𝑓 ∈ (𝑌 ↑𝑚 𝑋) ↔ 𝑓:𝑋⟶𝑌)) | 
| 28 |   | iscnp3 14439 | 
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) → (𝑓 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝑓:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 ((𝑓‘𝐴) ∈ 𝑥 → ∃𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ (◡𝑓 “ 𝑥)))))) | 
| 29 | 28 | adantr 276 | 
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ {𝐴} ∈ 𝐽) → (𝑓 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝑓:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 ((𝑓‘𝐴) ∈ 𝑥 → ∃𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ (◡𝑓 “ 𝑥)))))) | 
| 30 | 20, 27, 29 | 3bitr4rd 221 | 
. 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ {𝐴} ∈ 𝐽) → (𝑓 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ 𝑓 ∈ (𝑌 ↑𝑚 𝑋))) | 
| 31 | 30 | eqrdv 2194 | 
1
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ {𝐴} ∈ 𝐽) → ((𝐽 CnP 𝐾)‘𝐴) = (𝑌 ↑𝑚 𝑋)) |