ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzom1elp1fzo GIF version

Theorem elfzom1elp1fzo 10127
Description: Membership of an integer incremented by one in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Proof shortened by AV, 5-Jan-2020.)
Assertion
Ref Expression
elfzom1elp1fzo ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (𝐼 + 1) ∈ (0..^𝑁))

Proof of Theorem elfzom1elp1fzo
StepHypRef Expression
1 elfzofz 10087 . . . . . . 7 (𝐼 ∈ (0..^(𝑁 − 1)) → 𝐼 ∈ (0...(𝑁 − 1)))
2 elfzuz2 9954 . . . . . . 7 (𝐼 ∈ (0...(𝑁 − 1)) → (𝑁 − 1) ∈ (ℤ‘0))
3 elnn0uz 9494 . . . . . . . 8 ((𝑁 − 1) ∈ ℕ0 ↔ (𝑁 − 1) ∈ (ℤ‘0))
4 zcn 9187 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
54anim1i 338 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑁 − 1) ∈ ℕ0) → (𝑁 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0))
6 elnnnn0 9148 . . . . . . . . . 10 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0))
75, 6sylibr 133 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑁 − 1) ∈ ℕ0) → 𝑁 ∈ ℕ)
87expcom 115 . . . . . . . 8 ((𝑁 − 1) ∈ ℕ0 → (𝑁 ∈ ℤ → 𝑁 ∈ ℕ))
93, 8sylbir 134 . . . . . . 7 ((𝑁 − 1) ∈ (ℤ‘0) → (𝑁 ∈ ℤ → 𝑁 ∈ ℕ))
101, 2, 93syl 17 . . . . . 6 (𝐼 ∈ (0..^(𝑁 − 1)) → (𝑁 ∈ ℤ → 𝑁 ∈ ℕ))
1110impcom 124 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝑁 ∈ ℕ)
12 1nn0 9121 . . . . . . 7 1 ∈ ℕ0
1312a1i 9 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ ℕ0)
14 nnnn0 9112 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
15 nnge1 8871 . . . . . 6 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
1613, 14, 153jca 1166 . . . . 5 (𝑁 ∈ ℕ → (1 ∈ ℕ0𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁))
1711, 16syl 14 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (1 ∈ ℕ0𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁))
18 elfz2nn0 10037 . . . 4 (1 ∈ (0...𝑁) ↔ (1 ∈ ℕ0𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁))
1917, 18sylibr 133 . . 3 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 1 ∈ (0...𝑁))
20 fzossrbm1 10098 . . . . . . 7 (𝑁 ∈ ℤ → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
2120adantr 274 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
22 fzossfz 10090 . . . . . 6 (0..^𝑁) ⊆ (0...𝑁)
2321, 22sstrdi 3149 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (0..^(𝑁 − 1)) ⊆ (0...𝑁))
24 simpr 109 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝐼 ∈ (0..^(𝑁 − 1)))
2523, 24jca 304 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → ((0..^(𝑁 − 1)) ⊆ (0...𝑁) ∧ 𝐼 ∈ (0..^(𝑁 − 1))))
26 ssel2 3132 . . . 4 (((0..^(𝑁 − 1)) ⊆ (0...𝑁) ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝐼 ∈ (0...𝑁))
27 elfzubelfz 9961 . . . 4 (𝐼 ∈ (0...𝑁) → 𝑁 ∈ (0...𝑁))
2825, 26, 273syl 17 . . 3 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝑁 ∈ (0...𝑁))
2919, 28jca 304 . 2 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (1 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...𝑁)))
30 elfzodifsumelfzo 10126 . 2 ((1 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...𝑁)) → (𝐼 ∈ (0..^(𝑁 − 1)) → (𝐼 + 1) ∈ (0..^𝑁)))
3129, 24, 30sylc 62 1 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (𝐼 + 1) ∈ (0..^𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 967  wcel 2135  wss 3111   class class class wbr 3976  cfv 5182  (class class class)co 5836  cc 7742  0cc0 7744  1c1 7745   + caddc 7747  cle 7925  cmin 8060  cn 8848  0cn0 9105  cz 9182  cuz 9457  ...cfz 9935  ..^cfzo 10067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-addcom 7844  ax-addass 7846  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-0id 7852  ax-rnegex 7853  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-ltadd 7860
This theorem depends on definitions:  df-bi 116  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-inn 8849  df-n0 9106  df-z 9183  df-uz 9458  df-fz 9936  df-fzo 10068
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator