ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzom1elp1fzo GIF version

Theorem elfzom1elp1fzo 10278
Description: Membership of an integer incremented by one in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Proof shortened by AV, 5-Jan-2020.)
Assertion
Ref Expression
elfzom1elp1fzo ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (𝐼 + 1) ∈ (0..^𝑁))

Proof of Theorem elfzom1elp1fzo
StepHypRef Expression
1 elfzofz 10238 . . . . . . 7 (𝐼 ∈ (0..^(𝑁 − 1)) → 𝐼 ∈ (0...(𝑁 − 1)))
2 elfzuz2 10104 . . . . . . 7 (𝐼 ∈ (0...(𝑁 − 1)) → (𝑁 − 1) ∈ (ℤ‘0))
3 elnn0uz 9639 . . . . . . . 8 ((𝑁 − 1) ∈ ℕ0 ↔ (𝑁 − 1) ∈ (ℤ‘0))
4 zcn 9331 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
54anim1i 340 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑁 − 1) ∈ ℕ0) → (𝑁 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0))
6 elnnnn0 9292 . . . . . . . . . 10 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0))
75, 6sylibr 134 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑁 − 1) ∈ ℕ0) → 𝑁 ∈ ℕ)
87expcom 116 . . . . . . . 8 ((𝑁 − 1) ∈ ℕ0 → (𝑁 ∈ ℤ → 𝑁 ∈ ℕ))
93, 8sylbir 135 . . . . . . 7 ((𝑁 − 1) ∈ (ℤ‘0) → (𝑁 ∈ ℤ → 𝑁 ∈ ℕ))
101, 2, 93syl 17 . . . . . 6 (𝐼 ∈ (0..^(𝑁 − 1)) → (𝑁 ∈ ℤ → 𝑁 ∈ ℕ))
1110impcom 125 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝑁 ∈ ℕ)
12 1nn0 9265 . . . . . . 7 1 ∈ ℕ0
1312a1i 9 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ ℕ0)
14 nnnn0 9256 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
15 nnge1 9013 . . . . . 6 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
1613, 14, 153jca 1179 . . . . 5 (𝑁 ∈ ℕ → (1 ∈ ℕ0𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁))
1711, 16syl 14 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (1 ∈ ℕ0𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁))
18 elfz2nn0 10187 . . . 4 (1 ∈ (0...𝑁) ↔ (1 ∈ ℕ0𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁))
1917, 18sylibr 134 . . 3 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 1 ∈ (0...𝑁))
20 fzossrbm1 10249 . . . . . . 7 (𝑁 ∈ ℤ → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
2120adantr 276 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
22 fzossfz 10241 . . . . . 6 (0..^𝑁) ⊆ (0...𝑁)
2321, 22sstrdi 3195 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (0..^(𝑁 − 1)) ⊆ (0...𝑁))
24 simpr 110 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝐼 ∈ (0..^(𝑁 − 1)))
2523, 24jca 306 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → ((0..^(𝑁 − 1)) ⊆ (0...𝑁) ∧ 𝐼 ∈ (0..^(𝑁 − 1))))
26 ssel2 3178 . . . 4 (((0..^(𝑁 − 1)) ⊆ (0...𝑁) ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝐼 ∈ (0...𝑁))
27 elfzubelfz 10111 . . . 4 (𝐼 ∈ (0...𝑁) → 𝑁 ∈ (0...𝑁))
2825, 26, 273syl 17 . . 3 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝑁 ∈ (0...𝑁))
2919, 28jca 306 . 2 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (1 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...𝑁)))
30 elfzodifsumelfzo 10277 . 2 ((1 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...𝑁)) → (𝐼 ∈ (0..^(𝑁 − 1)) → (𝐼 + 1) ∈ (0..^𝑁)))
3129, 24, 30sylc 62 1 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (𝐼 + 1) ∈ (0..^𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980  wcel 2167  wss 3157   class class class wbr 4033  cfv 5258  (class class class)co 5922  cc 7877  0cc0 7879  1c1 7880   + caddc 7882  cle 8062  cmin 8197  cn 8990  0cn0 9249  cz 9326  cuz 9601  ...cfz 10083  ..^cfzo 10217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-fzo 10218
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator