![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elfzom1elp1fzo | GIF version |
Description: Membership of an integer incremented by one in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Proof shortened by AV, 5-Jan-2020.) |
Ref | Expression |
---|---|
elfzom1elp1fzo | ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (𝐼 + 1) ∈ (0..^𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzofz 10182 | . . . . . . 7 ⊢ (𝐼 ∈ (0..^(𝑁 − 1)) → 𝐼 ∈ (0...(𝑁 − 1))) | |
2 | elfzuz2 10049 | . . . . . . 7 ⊢ (𝐼 ∈ (0...(𝑁 − 1)) → (𝑁 − 1) ∈ (ℤ≥‘0)) | |
3 | elnn0uz 9585 | . . . . . . . 8 ⊢ ((𝑁 − 1) ∈ ℕ0 ↔ (𝑁 − 1) ∈ (ℤ≥‘0)) | |
4 | zcn 9278 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
5 | 4 | anim1i 340 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 − 1) ∈ ℕ0) → (𝑁 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0)) |
6 | elnnnn0 9239 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0)) | |
7 | 5, 6 | sylibr 134 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 − 1) ∈ ℕ0) → 𝑁 ∈ ℕ) |
8 | 7 | expcom 116 | . . . . . . . 8 ⊢ ((𝑁 − 1) ∈ ℕ0 → (𝑁 ∈ ℤ → 𝑁 ∈ ℕ)) |
9 | 3, 8 | sylbir 135 | . . . . . . 7 ⊢ ((𝑁 − 1) ∈ (ℤ≥‘0) → (𝑁 ∈ ℤ → 𝑁 ∈ ℕ)) |
10 | 1, 2, 9 | 3syl 17 | . . . . . 6 ⊢ (𝐼 ∈ (0..^(𝑁 − 1)) → (𝑁 ∈ ℤ → 𝑁 ∈ ℕ)) |
11 | 10 | impcom 125 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝑁 ∈ ℕ) |
12 | 1nn0 9212 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
13 | 12 | a1i 9 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 1 ∈ ℕ0) |
14 | nnnn0 9203 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
15 | nnge1 8962 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 1 ≤ 𝑁) | |
16 | 13, 14, 15 | 3jca 1179 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (1 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁)) |
17 | 11, 16 | syl 14 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (1 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁)) |
18 | elfz2nn0 10132 | . . . 4 ⊢ (1 ∈ (0...𝑁) ↔ (1 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁)) | |
19 | 17, 18 | sylibr 134 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 1 ∈ (0...𝑁)) |
20 | fzossrbm1 10193 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (0..^(𝑁 − 1)) ⊆ (0..^𝑁)) | |
21 | 20 | adantr 276 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁)) |
22 | fzossfz 10185 | . . . . . 6 ⊢ (0..^𝑁) ⊆ (0...𝑁) | |
23 | 21, 22 | sstrdi 3182 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (0..^(𝑁 − 1)) ⊆ (0...𝑁)) |
24 | simpr 110 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝐼 ∈ (0..^(𝑁 − 1))) | |
25 | 23, 24 | jca 306 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → ((0..^(𝑁 − 1)) ⊆ (0...𝑁) ∧ 𝐼 ∈ (0..^(𝑁 − 1)))) |
26 | ssel2 3165 | . . . 4 ⊢ (((0..^(𝑁 − 1)) ⊆ (0...𝑁) ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝐼 ∈ (0...𝑁)) | |
27 | elfzubelfz 10056 | . . . 4 ⊢ (𝐼 ∈ (0...𝑁) → 𝑁 ∈ (0...𝑁)) | |
28 | 25, 26, 27 | 3syl 17 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝑁 ∈ (0...𝑁)) |
29 | 19, 28 | jca 306 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (1 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...𝑁))) |
30 | elfzodifsumelfzo 10221 | . 2 ⊢ ((1 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...𝑁)) → (𝐼 ∈ (0..^(𝑁 − 1)) → (𝐼 + 1) ∈ (0..^𝑁))) | |
31 | 29, 24, 30 | sylc 62 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (𝐼 + 1) ∈ (0..^𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 ∈ wcel 2160 ⊆ wss 3144 class class class wbr 4018 ‘cfv 5232 (class class class)co 5892 ℂcc 7829 0cc0 7831 1c1 7832 + caddc 7834 ≤ cle 8013 − cmin 8148 ℕcn 8939 ℕ0cn0 9196 ℤcz 9273 ℤ≥cuz 9548 ...cfz 10028 ..^cfzo 10162 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-cnex 7922 ax-resscn 7923 ax-1cn 7924 ax-1re 7925 ax-icn 7926 ax-addcl 7927 ax-addrcl 7928 ax-mulcl 7929 ax-addcom 7931 ax-addass 7933 ax-distr 7935 ax-i2m1 7936 ax-0lt1 7937 ax-0id 7939 ax-rnegex 7940 ax-cnre 7942 ax-pre-ltirr 7943 ax-pre-ltwlin 7944 ax-pre-lttrn 7945 ax-pre-ltadd 7947 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5234 df-fn 5235 df-f 5236 df-fv 5240 df-riota 5848 df-ov 5895 df-oprab 5896 df-mpo 5897 df-1st 6160 df-2nd 6161 df-pnf 8014 df-mnf 8015 df-xr 8016 df-ltxr 8017 df-le 8018 df-sub 8150 df-neg 8151 df-inn 8940 df-n0 9197 df-z 9274 df-uz 9549 df-fz 10029 df-fzo 10163 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |