ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzom1elp1fzo GIF version

Theorem elfzom1elp1fzo 10408
Description: Membership of an integer incremented by one in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Proof shortened by AV, 5-Jan-2020.)
Assertion
Ref Expression
elfzom1elp1fzo ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (𝐼 + 1) ∈ (0..^𝑁))

Proof of Theorem elfzom1elp1fzo
StepHypRef Expression
1 elfzofz 10359 . . . . . . 7 (𝐼 ∈ (0..^(𝑁 − 1)) → 𝐼 ∈ (0...(𝑁 − 1)))
2 elfzuz2 10225 . . . . . . 7 (𝐼 ∈ (0...(𝑁 − 1)) → (𝑁 − 1) ∈ (ℤ‘0))
3 elnn0uz 9760 . . . . . . . 8 ((𝑁 − 1) ∈ ℕ0 ↔ (𝑁 − 1) ∈ (ℤ‘0))
4 zcn 9451 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
54anim1i 340 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑁 − 1) ∈ ℕ0) → (𝑁 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0))
6 elnnnn0 9412 . . . . . . . . . 10 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0))
75, 6sylibr 134 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑁 − 1) ∈ ℕ0) → 𝑁 ∈ ℕ)
87expcom 116 . . . . . . . 8 ((𝑁 − 1) ∈ ℕ0 → (𝑁 ∈ ℤ → 𝑁 ∈ ℕ))
93, 8sylbir 135 . . . . . . 7 ((𝑁 − 1) ∈ (ℤ‘0) → (𝑁 ∈ ℤ → 𝑁 ∈ ℕ))
101, 2, 93syl 17 . . . . . 6 (𝐼 ∈ (0..^(𝑁 − 1)) → (𝑁 ∈ ℤ → 𝑁 ∈ ℕ))
1110impcom 125 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝑁 ∈ ℕ)
12 1nn0 9385 . . . . . . 7 1 ∈ ℕ0
1312a1i 9 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ ℕ0)
14 nnnn0 9376 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
15 nnge1 9133 . . . . . 6 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
1613, 14, 153jca 1201 . . . . 5 (𝑁 ∈ ℕ → (1 ∈ ℕ0𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁))
1711, 16syl 14 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (1 ∈ ℕ0𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁))
18 elfz2nn0 10308 . . . 4 (1 ∈ (0...𝑁) ↔ (1 ∈ ℕ0𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁))
1917, 18sylibr 134 . . 3 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 1 ∈ (0...𝑁))
20 fzossrbm1 10371 . . . . . . 7 (𝑁 ∈ ℤ → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
2120adantr 276 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
22 fzossfz 10362 . . . . . 6 (0..^𝑁) ⊆ (0...𝑁)
2321, 22sstrdi 3236 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (0..^(𝑁 − 1)) ⊆ (0...𝑁))
24 simpr 110 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝐼 ∈ (0..^(𝑁 − 1)))
2523, 24jca 306 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → ((0..^(𝑁 − 1)) ⊆ (0...𝑁) ∧ 𝐼 ∈ (0..^(𝑁 − 1))))
26 ssel2 3219 . . . 4 (((0..^(𝑁 − 1)) ⊆ (0...𝑁) ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝐼 ∈ (0...𝑁))
27 elfzubelfz 10232 . . . 4 (𝐼 ∈ (0...𝑁) → 𝑁 ∈ (0...𝑁))
2825, 26, 273syl 17 . . 3 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝑁 ∈ (0...𝑁))
2919, 28jca 306 . 2 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (1 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...𝑁)))
30 elfzodifsumelfzo 10407 . 2 ((1 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...𝑁)) → (𝐼 ∈ (0..^(𝑁 − 1)) → (𝐼 + 1) ∈ (0..^𝑁)))
3129, 24, 30sylc 62 1 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (𝐼 + 1) ∈ (0..^𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002  wcel 2200  wss 3197   class class class wbr 4083  cfv 5318  (class class class)co 6001  cc 7997  0cc0 7999  1c1 8000   + caddc 8002  cle 8182  cmin 8317  cn 9110  0cn0 9369  cz 9446  cuz 9722  ...cfz 10204  ..^cfzo 10338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205  df-fzo 10339
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator