ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzom1elp1fzo GIF version

Theorem elfzom1elp1fzo 10368
Description: Membership of an integer incremented by one in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Proof shortened by AV, 5-Jan-2020.)
Assertion
Ref Expression
elfzom1elp1fzo ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (𝐼 + 1) ∈ (0..^𝑁))

Proof of Theorem elfzom1elp1fzo
StepHypRef Expression
1 elfzofz 10320 . . . . . . 7 (𝐼 ∈ (0..^(𝑁 − 1)) → 𝐼 ∈ (0...(𝑁 − 1)))
2 elfzuz2 10186 . . . . . . 7 (𝐼 ∈ (0...(𝑁 − 1)) → (𝑁 − 1) ∈ (ℤ‘0))
3 elnn0uz 9721 . . . . . . . 8 ((𝑁 − 1) ∈ ℕ0 ↔ (𝑁 − 1) ∈ (ℤ‘0))
4 zcn 9412 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
54anim1i 340 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑁 − 1) ∈ ℕ0) → (𝑁 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0))
6 elnnnn0 9373 . . . . . . . . . 10 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0))
75, 6sylibr 134 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑁 − 1) ∈ ℕ0) → 𝑁 ∈ ℕ)
87expcom 116 . . . . . . . 8 ((𝑁 − 1) ∈ ℕ0 → (𝑁 ∈ ℤ → 𝑁 ∈ ℕ))
93, 8sylbir 135 . . . . . . 7 ((𝑁 − 1) ∈ (ℤ‘0) → (𝑁 ∈ ℤ → 𝑁 ∈ ℕ))
101, 2, 93syl 17 . . . . . 6 (𝐼 ∈ (0..^(𝑁 − 1)) → (𝑁 ∈ ℤ → 𝑁 ∈ ℕ))
1110impcom 125 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝑁 ∈ ℕ)
12 1nn0 9346 . . . . . . 7 1 ∈ ℕ0
1312a1i 9 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ ℕ0)
14 nnnn0 9337 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
15 nnge1 9094 . . . . . 6 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
1613, 14, 153jca 1180 . . . . 5 (𝑁 ∈ ℕ → (1 ∈ ℕ0𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁))
1711, 16syl 14 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (1 ∈ ℕ0𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁))
18 elfz2nn0 10269 . . . 4 (1 ∈ (0...𝑁) ↔ (1 ∈ ℕ0𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁))
1917, 18sylibr 134 . . 3 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 1 ∈ (0...𝑁))
20 fzossrbm1 10332 . . . . . . 7 (𝑁 ∈ ℤ → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
2120adantr 276 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
22 fzossfz 10323 . . . . . 6 (0..^𝑁) ⊆ (0...𝑁)
2321, 22sstrdi 3213 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (0..^(𝑁 − 1)) ⊆ (0...𝑁))
24 simpr 110 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝐼 ∈ (0..^(𝑁 − 1)))
2523, 24jca 306 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → ((0..^(𝑁 − 1)) ⊆ (0...𝑁) ∧ 𝐼 ∈ (0..^(𝑁 − 1))))
26 ssel2 3196 . . . 4 (((0..^(𝑁 − 1)) ⊆ (0...𝑁) ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝐼 ∈ (0...𝑁))
27 elfzubelfz 10193 . . . 4 (𝐼 ∈ (0...𝑁) → 𝑁 ∈ (0...𝑁))
2825, 26, 273syl 17 . . 3 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝑁 ∈ (0...𝑁))
2919, 28jca 306 . 2 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (1 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...𝑁)))
30 elfzodifsumelfzo 10367 . 2 ((1 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...𝑁)) → (𝐼 ∈ (0..^(𝑁 − 1)) → (𝐼 + 1) ∈ (0..^𝑁)))
3129, 24, 30sylc 62 1 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (𝐼 + 1) ∈ (0..^𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981  wcel 2178  wss 3174   class class class wbr 4059  cfv 5290  (class class class)co 5967  cc 7958  0cc0 7960  1c1 7961   + caddc 7963  cle 8143  cmin 8278  cn 9071  0cn0 9330  cz 9407  cuz 9683  ...cfz 10165  ..^cfzo 10299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-fzo 10300
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator