| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzom1elp1fzo | GIF version | ||
| Description: Membership of an integer incremented by one in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Proof shortened by AV, 5-Jan-2020.) |
| Ref | Expression |
|---|---|
| elfzom1elp1fzo | ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (𝐼 + 1) ∈ (0..^𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzofz 10238 | . . . . . . 7 ⊢ (𝐼 ∈ (0..^(𝑁 − 1)) → 𝐼 ∈ (0...(𝑁 − 1))) | |
| 2 | elfzuz2 10104 | . . . . . . 7 ⊢ (𝐼 ∈ (0...(𝑁 − 1)) → (𝑁 − 1) ∈ (ℤ≥‘0)) | |
| 3 | elnn0uz 9639 | . . . . . . . 8 ⊢ ((𝑁 − 1) ∈ ℕ0 ↔ (𝑁 − 1) ∈ (ℤ≥‘0)) | |
| 4 | zcn 9331 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 5 | 4 | anim1i 340 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 − 1) ∈ ℕ0) → (𝑁 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0)) |
| 6 | elnnnn0 9292 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0)) | |
| 7 | 5, 6 | sylibr 134 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 − 1) ∈ ℕ0) → 𝑁 ∈ ℕ) |
| 8 | 7 | expcom 116 | . . . . . . . 8 ⊢ ((𝑁 − 1) ∈ ℕ0 → (𝑁 ∈ ℤ → 𝑁 ∈ ℕ)) |
| 9 | 3, 8 | sylbir 135 | . . . . . . 7 ⊢ ((𝑁 − 1) ∈ (ℤ≥‘0) → (𝑁 ∈ ℤ → 𝑁 ∈ ℕ)) |
| 10 | 1, 2, 9 | 3syl 17 | . . . . . 6 ⊢ (𝐼 ∈ (0..^(𝑁 − 1)) → (𝑁 ∈ ℤ → 𝑁 ∈ ℕ)) |
| 11 | 10 | impcom 125 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝑁 ∈ ℕ) |
| 12 | 1nn0 9265 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 13 | 12 | a1i 9 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 1 ∈ ℕ0) |
| 14 | nnnn0 9256 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 15 | nnge1 9013 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 1 ≤ 𝑁) | |
| 16 | 13, 14, 15 | 3jca 1179 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (1 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁)) |
| 17 | 11, 16 | syl 14 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (1 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁)) |
| 18 | elfz2nn0 10187 | . . . 4 ⊢ (1 ∈ (0...𝑁) ↔ (1 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁)) | |
| 19 | 17, 18 | sylibr 134 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 1 ∈ (0...𝑁)) |
| 20 | fzossrbm1 10249 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (0..^(𝑁 − 1)) ⊆ (0..^𝑁)) | |
| 21 | 20 | adantr 276 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁)) |
| 22 | fzossfz 10241 | . . . . . 6 ⊢ (0..^𝑁) ⊆ (0...𝑁) | |
| 23 | 21, 22 | sstrdi 3195 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (0..^(𝑁 − 1)) ⊆ (0...𝑁)) |
| 24 | simpr 110 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝐼 ∈ (0..^(𝑁 − 1))) | |
| 25 | 23, 24 | jca 306 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → ((0..^(𝑁 − 1)) ⊆ (0...𝑁) ∧ 𝐼 ∈ (0..^(𝑁 − 1)))) |
| 26 | ssel2 3178 | . . . 4 ⊢ (((0..^(𝑁 − 1)) ⊆ (0...𝑁) ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝐼 ∈ (0...𝑁)) | |
| 27 | elfzubelfz 10111 | . . . 4 ⊢ (𝐼 ∈ (0...𝑁) → 𝑁 ∈ (0...𝑁)) | |
| 28 | 25, 26, 27 | 3syl 17 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝑁 ∈ (0...𝑁)) |
| 29 | 19, 28 | jca 306 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (1 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...𝑁))) |
| 30 | elfzodifsumelfzo 10277 | . 2 ⊢ ((1 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...𝑁)) → (𝐼 ∈ (0..^(𝑁 − 1)) → (𝐼 + 1) ∈ (0..^𝑁))) | |
| 31 | 29, 24, 30 | sylc 62 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (𝐼 + 1) ∈ (0..^𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 ∈ wcel 2167 ⊆ wss 3157 class class class wbr 4033 ‘cfv 5258 (class class class)co 5922 ℂcc 7877 0cc0 7879 1c1 7880 + caddc 7882 ≤ cle 8062 − cmin 8197 ℕcn 8990 ℕ0cn0 9249 ℤcz 9326 ℤ≥cuz 9601 ...cfz 10083 ..^cfzo 10217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 df-fzo 10218 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |