ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftlem GIF version

Theorem shftlem 10825
Description: Two ways to write a shifted set (𝐵 + 𝐴). (Contributed by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
shftlem ((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} = {𝑥 ∣ ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem shftlem
StepHypRef Expression
1 df-rab 2464 . 2 {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} = {𝑥 ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵)}
2 npcan 8166 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑥𝐴) + 𝐴) = 𝑥)
32ancoms 268 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑥𝐴) + 𝐴) = 𝑥)
43eqcomd 2183 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → 𝑥 = ((𝑥𝐴) + 𝐴))
5 oveq1 5882 . . . . . . . . . 10 (𝑦 = (𝑥𝐴) → (𝑦 + 𝐴) = ((𝑥𝐴) + 𝐴))
65eqeq2d 2189 . . . . . . . . 9 (𝑦 = (𝑥𝐴) → (𝑥 = (𝑦 + 𝐴) ↔ 𝑥 = ((𝑥𝐴) + 𝐴)))
76rspcev 2842 . . . . . . . 8 (((𝑥𝐴) ∈ 𝐵𝑥 = ((𝑥𝐴) + 𝐴)) → ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴))
87expcom 116 . . . . . . 7 (𝑥 = ((𝑥𝐴) + 𝐴) → ((𝑥𝐴) ∈ 𝐵 → ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)))
94, 8syl 14 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑥𝐴) ∈ 𝐵 → ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)))
109expimpd 363 . . . . 5 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵) → ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)))
1110adantr 276 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → ((𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵) → ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)))
12 ssel2 3151 . . . . . . . . . 10 ((𝐵 ⊆ ℂ ∧ 𝑦𝐵) → 𝑦 ∈ ℂ)
13 addcl 7936 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑦 + 𝐴) ∈ ℂ)
1412, 13sylan 283 . . . . . . . . 9 (((𝐵 ⊆ ℂ ∧ 𝑦𝐵) ∧ 𝐴 ∈ ℂ) → (𝑦 + 𝐴) ∈ ℂ)
15 pncan 8163 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑦 + 𝐴) − 𝐴) = 𝑦)
1612, 15sylan 283 . . . . . . . . . 10 (((𝐵 ⊆ ℂ ∧ 𝑦𝐵) ∧ 𝐴 ∈ ℂ) → ((𝑦 + 𝐴) − 𝐴) = 𝑦)
17 simplr 528 . . . . . . . . . 10 (((𝐵 ⊆ ℂ ∧ 𝑦𝐵) ∧ 𝐴 ∈ ℂ) → 𝑦𝐵)
1816, 17eqeltrd 2254 . . . . . . . . 9 (((𝐵 ⊆ ℂ ∧ 𝑦𝐵) ∧ 𝐴 ∈ ℂ) → ((𝑦 + 𝐴) − 𝐴) ∈ 𝐵)
1914, 18jca 306 . . . . . . . 8 (((𝐵 ⊆ ℂ ∧ 𝑦𝐵) ∧ 𝐴 ∈ ℂ) → ((𝑦 + 𝐴) ∈ ℂ ∧ ((𝑦 + 𝐴) − 𝐴) ∈ 𝐵))
2019ancoms 268 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝐵 ⊆ ℂ ∧ 𝑦𝐵)) → ((𝑦 + 𝐴) ∈ ℂ ∧ ((𝑦 + 𝐴) − 𝐴) ∈ 𝐵))
2120anassrs 400 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑦𝐵) → ((𝑦 + 𝐴) ∈ ℂ ∧ ((𝑦 + 𝐴) − 𝐴) ∈ 𝐵))
22 eleq1 2240 . . . . . . 7 (𝑥 = (𝑦 + 𝐴) → (𝑥 ∈ ℂ ↔ (𝑦 + 𝐴) ∈ ℂ))
23 oveq1 5882 . . . . . . . 8 (𝑥 = (𝑦 + 𝐴) → (𝑥𝐴) = ((𝑦 + 𝐴) − 𝐴))
2423eleq1d 2246 . . . . . . 7 (𝑥 = (𝑦 + 𝐴) → ((𝑥𝐴) ∈ 𝐵 ↔ ((𝑦 + 𝐴) − 𝐴) ∈ 𝐵))
2522, 24anbi12d 473 . . . . . 6 (𝑥 = (𝑦 + 𝐴) → ((𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵) ↔ ((𝑦 + 𝐴) ∈ ℂ ∧ ((𝑦 + 𝐴) − 𝐴) ∈ 𝐵)))
2621, 25syl5ibrcom 157 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑦𝐵) → (𝑥 = (𝑦 + 𝐴) → (𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵)))
2726rexlimdva 2594 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → (∃𝑦𝐵 𝑥 = (𝑦 + 𝐴) → (𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵)))
2811, 27impbid 129 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → ((𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵) ↔ ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)))
2928abbidv 2295 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → {𝑥 ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵)} = {𝑥 ∣ ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)})
301, 29eqtrid 2222 1 ((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} = {𝑥 ∣ ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  {cab 2163  wrex 2456  {crab 2459  wss 3130  (class class class)co 5875  cc 7809   + caddc 7814  cmin 8128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-setind 4537  ax-resscn 7903  ax-1cn 7904  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-distr 7915  ax-i2m1 7916  ax-0id 7919  ax-rnegex 7920  ax-cnre 7922
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-iota 5179  df-fun 5219  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-sub 8130
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator