ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negcncf GIF version

Theorem negcncf 12746
Description: The negative function is continuous. (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypothesis
Ref Expression
negcncf.1 𝐹 = (𝑥𝐴 ↦ -𝑥)
Assertion
Ref Expression
negcncf (𝐴 ⊆ ℂ → 𝐹 ∈ (𝐴cn→ℂ))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem negcncf
Dummy variables 𝑒 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . 2 (𝐴 ⊆ ℂ → 𝐴 ⊆ ℂ)
2 ssidd 3113 . 2 (𝐴 ⊆ ℂ → ℂ ⊆ ℂ)
3 ssel2 3087 . . . . 5 ((𝐴 ⊆ ℂ ∧ 𝑥𝐴) → 𝑥 ∈ ℂ)
43negcld 8053 . . . 4 ((𝐴 ⊆ ℂ ∧ 𝑥𝐴) → -𝑥 ∈ ℂ)
5 negcncf.1 . . . 4 𝐹 = (𝑥𝐴 ↦ -𝑥)
64, 5fmptd 5567 . . 3 (𝐴 ⊆ ℂ → 𝐹:𝐴⟶ℂ)
7 simpr 109 . . . 4 ((𝑢𝐴𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
87a1i 9 . . 3 (𝐴 ⊆ ℂ → ((𝑢𝐴𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+))
9 negeq 7948 . . . . . . . . . 10 (𝑥 = 𝑢 → -𝑥 = -𝑢)
10 simprll 526 . . . . . . . . . 10 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑢𝐴)
11 simpl 108 . . . . . . . . . . . 12 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝐴 ⊆ ℂ)
1211, 10sseldd 3093 . . . . . . . . . . 11 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑢 ∈ ℂ)
1312negcld 8053 . . . . . . . . . 10 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → -𝑢 ∈ ℂ)
145, 9, 10, 13fvmptd3 5507 . . . . . . . . 9 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → (𝐹𝑢) = -𝑢)
15 negeq 7948 . . . . . . . . . 10 (𝑥 = 𝑣 → -𝑥 = -𝑣)
16 simprlr 527 . . . . . . . . . 10 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑣𝐴)
1711, 16sseldd 3093 . . . . . . . . . . 11 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑣 ∈ ℂ)
1817negcld 8053 . . . . . . . . . 10 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → -𝑣 ∈ ℂ)
195, 15, 16, 18fvmptd3 5507 . . . . . . . . 9 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → (𝐹𝑣) = -𝑣)
2014, 19oveq12d 5785 . . . . . . . 8 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → ((𝐹𝑢) − (𝐹𝑣)) = (-𝑢 − -𝑣))
2112, 17neg2subd 8083 . . . . . . . 8 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → (-𝑢 − -𝑣) = (𝑣𝑢))
2220, 21eqtrd 2170 . . . . . . 7 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → ((𝐹𝑢) − (𝐹𝑣)) = (𝑣𝑢))
2322fveq2d 5418 . . . . . 6 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → (abs‘((𝐹𝑢) − (𝐹𝑣))) = (abs‘(𝑣𝑢)))
2417, 12abssubd 10958 . . . . . 6 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → (abs‘(𝑣𝑢)) = (abs‘(𝑢𝑣)))
2523, 24eqtrd 2170 . . . . 5 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → (abs‘((𝐹𝑢) − (𝐹𝑣))) = (abs‘(𝑢𝑣)))
2625breq1d 3934 . . . 4 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → ((abs‘((𝐹𝑢) − (𝐹𝑣))) < 𝑒 ↔ (abs‘(𝑢𝑣)) < 𝑒))
2726exbiri 379 . . 3 (𝐴 ⊆ ℂ → (((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+) → ((abs‘(𝑢𝑣)) < 𝑒 → (abs‘((𝐹𝑢) − (𝐹𝑣))) < 𝑒)))
286, 8, 27elcncf1di 12724 . 2 (𝐴 ⊆ ℂ → ((𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → 𝐹 ∈ (𝐴cn→ℂ)))
291, 2, 28mp2and 429 1 (𝐴 ⊆ ℂ → 𝐹 ∈ (𝐴cn→ℂ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  wss 3066   class class class wbr 3924  cmpt 3984  cfv 5118  (class class class)co 5767  cc 7611   < clt 7793  cmin 7926  -cneg 7927  +crp 9434  abscabs 10762  cnccncf 12715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-po 4213  df-iso 4214  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-map 6537  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-2 8772  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-cncf 12716
This theorem is referenced by:  negfcncf  12747
  Copyright terms: Public domain W3C validator