Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > negcncf | GIF version |
Description: The negative function is continuous. (Contributed by Mario Carneiro, 30-Dec-2016.) |
Ref | Expression |
---|---|
negcncf.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ -𝑥) |
Ref | Expression |
---|---|
negcncf | ⊢ (𝐴 ⊆ ℂ → 𝐹 ∈ (𝐴–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝐴 ⊆ ℂ → 𝐴 ⊆ ℂ) | |
2 | ssidd 3174 | . 2 ⊢ (𝐴 ⊆ ℂ → ℂ ⊆ ℂ) | |
3 | ssel2 3148 | . . . . 5 ⊢ ((𝐴 ⊆ ℂ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℂ) | |
4 | 3 | negcld 8229 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ 𝑥 ∈ 𝐴) → -𝑥 ∈ ℂ) |
5 | negcncf.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ -𝑥) | |
6 | 4, 5 | fmptd 5662 | . . 3 ⊢ (𝐴 ⊆ ℂ → 𝐹:𝐴⟶ℂ) |
7 | simpr 110 | . . . 4 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+) | |
8 | 7 | a1i 9 | . . 3 ⊢ (𝐴 ⊆ ℂ → ((𝑢 ∈ 𝐴 ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)) |
9 | negeq 8124 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑢 → -𝑥 = -𝑢) | |
10 | simprll 537 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑢 ∈ 𝐴) | |
11 | simpl 109 | . . . . . . . . . . . 12 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝐴 ⊆ ℂ) | |
12 | 11, 10 | sseldd 3154 | . . . . . . . . . . 11 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑢 ∈ ℂ) |
13 | 12 | negcld 8229 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → -𝑢 ∈ ℂ) |
14 | 5, 9, 10, 13 | fvmptd3 5601 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → (𝐹‘𝑢) = -𝑢) |
15 | negeq 8124 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑣 → -𝑥 = -𝑣) | |
16 | simprlr 538 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑣 ∈ 𝐴) | |
17 | 11, 16 | sseldd 3154 | . . . . . . . . . . 11 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑣 ∈ ℂ) |
18 | 17 | negcld 8229 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → -𝑣 ∈ ℂ) |
19 | 5, 15, 16, 18 | fvmptd3 5601 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → (𝐹‘𝑣) = -𝑣) |
20 | 14, 19 | oveq12d 5883 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → ((𝐹‘𝑢) − (𝐹‘𝑣)) = (-𝑢 − -𝑣)) |
21 | 12, 17 | neg2subd 8259 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → (-𝑢 − -𝑣) = (𝑣 − 𝑢)) |
22 | 20, 21 | eqtrd 2208 | . . . . . . 7 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → ((𝐹‘𝑢) − (𝐹‘𝑣)) = (𝑣 − 𝑢)) |
23 | 22 | fveq2d 5511 | . . . . . 6 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → (abs‘((𝐹‘𝑢) − (𝐹‘𝑣))) = (abs‘(𝑣 − 𝑢))) |
24 | 17, 12 | abssubd 11168 | . . . . . 6 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → (abs‘(𝑣 − 𝑢)) = (abs‘(𝑢 − 𝑣))) |
25 | 23, 24 | eqtrd 2208 | . . . . 5 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → (abs‘((𝐹‘𝑢) − (𝐹‘𝑣))) = (abs‘(𝑢 − 𝑣))) |
26 | 25 | breq1d 4008 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → ((abs‘((𝐹‘𝑢) − (𝐹‘𝑣))) < 𝑒 ↔ (abs‘(𝑢 − 𝑣)) < 𝑒)) |
27 | 26 | exbiri 382 | . . 3 ⊢ (𝐴 ⊆ ℂ → (((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+) → ((abs‘(𝑢 − 𝑣)) < 𝑒 → (abs‘((𝐹‘𝑢) − (𝐹‘𝑣))) < 𝑒))) |
28 | 6, 8, 27 | elcncf1di 13635 | . 2 ⊢ (𝐴 ⊆ ℂ → ((𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → 𝐹 ∈ (𝐴–cn→ℂ))) |
29 | 1, 2, 28 | mp2and 433 | 1 ⊢ (𝐴 ⊆ ℂ → 𝐹 ∈ (𝐴–cn→ℂ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2146 ⊆ wss 3127 class class class wbr 3998 ↦ cmpt 4059 ‘cfv 5208 (class class class)co 5865 ℂcc 7784 < clt 7966 − cmin 8102 -cneg 8103 ℝ+crp 9622 abscabs 10972 –cn→ccncf 13626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 ax-pre-mulext 7904 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-po 4290 df-iso 4291 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-map 6640 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 df-div 8602 df-2 8949 df-cj 10817 df-re 10818 df-im 10819 df-rsqrt 10973 df-abs 10974 df-cncf 13627 |
This theorem is referenced by: negfcncf 13658 |
Copyright terms: Public domain | W3C validator |