| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negcncf | GIF version | ||
| Description: The negative function is continuous. (Contributed by Mario Carneiro, 30-Dec-2016.) |
| Ref | Expression |
|---|---|
| negcncf.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ -𝑥) |
| Ref | Expression |
|---|---|
| negcncf | ⊢ (𝐴 ⊆ ℂ → 𝐹 ∈ (𝐴–cn→ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝐴 ⊆ ℂ → 𝐴 ⊆ ℂ) | |
| 2 | ssidd 3245 | . 2 ⊢ (𝐴 ⊆ ℂ → ℂ ⊆ ℂ) | |
| 3 | ssel2 3219 | . . . . 5 ⊢ ((𝐴 ⊆ ℂ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℂ) | |
| 4 | 3 | negcld 8432 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ 𝑥 ∈ 𝐴) → -𝑥 ∈ ℂ) |
| 5 | negcncf.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ -𝑥) | |
| 6 | 4, 5 | fmptd 5782 | . . 3 ⊢ (𝐴 ⊆ ℂ → 𝐹:𝐴⟶ℂ) |
| 7 | simpr 110 | . . . 4 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+) | |
| 8 | 7 | a1i 9 | . . 3 ⊢ (𝐴 ⊆ ℂ → ((𝑢 ∈ 𝐴 ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)) |
| 9 | negeq 8327 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑢 → -𝑥 = -𝑢) | |
| 10 | simprll 537 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑢 ∈ 𝐴) | |
| 11 | simpl 109 | . . . . . . . . . . . 12 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝐴 ⊆ ℂ) | |
| 12 | 11, 10 | sseldd 3225 | . . . . . . . . . . 11 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑢 ∈ ℂ) |
| 13 | 12 | negcld 8432 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → -𝑢 ∈ ℂ) |
| 14 | 5, 9, 10, 13 | fvmptd3 5721 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → (𝐹‘𝑢) = -𝑢) |
| 15 | negeq 8327 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑣 → -𝑥 = -𝑣) | |
| 16 | simprlr 538 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑣 ∈ 𝐴) | |
| 17 | 11, 16 | sseldd 3225 | . . . . . . . . . . 11 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑣 ∈ ℂ) |
| 18 | 17 | negcld 8432 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → -𝑣 ∈ ℂ) |
| 19 | 5, 15, 16, 18 | fvmptd3 5721 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → (𝐹‘𝑣) = -𝑣) |
| 20 | 14, 19 | oveq12d 6012 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → ((𝐹‘𝑢) − (𝐹‘𝑣)) = (-𝑢 − -𝑣)) |
| 21 | 12, 17 | neg2subd 8462 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → (-𝑢 − -𝑣) = (𝑣 − 𝑢)) |
| 22 | 20, 21 | eqtrd 2262 | . . . . . . 7 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → ((𝐹‘𝑢) − (𝐹‘𝑣)) = (𝑣 − 𝑢)) |
| 23 | 22 | fveq2d 5627 | . . . . . 6 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → (abs‘((𝐹‘𝑢) − (𝐹‘𝑣))) = (abs‘(𝑣 − 𝑢))) |
| 24 | 17, 12 | abssubd 11690 | . . . . . 6 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → (abs‘(𝑣 − 𝑢)) = (abs‘(𝑢 − 𝑣))) |
| 25 | 23, 24 | eqtrd 2262 | . . . . 5 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → (abs‘((𝐹‘𝑢) − (𝐹‘𝑣))) = (abs‘(𝑢 − 𝑣))) |
| 26 | 25 | breq1d 4092 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → ((abs‘((𝐹‘𝑢) − (𝐹‘𝑣))) < 𝑒 ↔ (abs‘(𝑢 − 𝑣)) < 𝑒)) |
| 27 | 26 | exbiri 382 | . . 3 ⊢ (𝐴 ⊆ ℂ → (((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+) → ((abs‘(𝑢 − 𝑣)) < 𝑒 → (abs‘((𝐹‘𝑢) − (𝐹‘𝑣))) < 𝑒))) |
| 28 | 6, 8, 27 | elcncf1di 15238 | . 2 ⊢ (𝐴 ⊆ ℂ → ((𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → 𝐹 ∈ (𝐴–cn→ℂ))) |
| 29 | 1, 2, 28 | mp2and 433 | 1 ⊢ (𝐴 ⊆ ℂ → 𝐹 ∈ (𝐴–cn→ℂ)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ⊆ wss 3197 class class class wbr 4082 ↦ cmpt 4144 ‘cfv 5314 (class class class)co 5994 ℂcc 7985 < clt 8169 − cmin 8305 -cneg 8306 ℝ+crp 9837 abscabs 11494 –cn→ccncf 15229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-po 4384 df-iso 4385 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-map 6787 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-2 9157 df-cj 11339 df-re 11340 df-im 11341 df-rsqrt 11495 df-abs 11496 df-cncf 15230 |
| This theorem is referenced by: negfcncf 15265 |
| Copyright terms: Public domain | W3C validator |