ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negcncf GIF version

Theorem negcncf 12796
Description: The negative function is continuous. (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypothesis
Ref Expression
negcncf.1 𝐹 = (𝑥𝐴 ↦ -𝑥)
Assertion
Ref Expression
negcncf (𝐴 ⊆ ℂ → 𝐹 ∈ (𝐴cn→ℂ))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem negcncf
Dummy variables 𝑒 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . 2 (𝐴 ⊆ ℂ → 𝐴 ⊆ ℂ)
2 ssidd 3123 . 2 (𝐴 ⊆ ℂ → ℂ ⊆ ℂ)
3 ssel2 3097 . . . . 5 ((𝐴 ⊆ ℂ ∧ 𝑥𝐴) → 𝑥 ∈ ℂ)
43negcld 8084 . . . 4 ((𝐴 ⊆ ℂ ∧ 𝑥𝐴) → -𝑥 ∈ ℂ)
5 negcncf.1 . . . 4 𝐹 = (𝑥𝐴 ↦ -𝑥)
64, 5fmptd 5582 . . 3 (𝐴 ⊆ ℂ → 𝐹:𝐴⟶ℂ)
7 simpr 109 . . . 4 ((𝑢𝐴𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
87a1i 9 . . 3 (𝐴 ⊆ ℂ → ((𝑢𝐴𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+))
9 negeq 7979 . . . . . . . . . 10 (𝑥 = 𝑢 → -𝑥 = -𝑢)
10 simprll 527 . . . . . . . . . 10 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑢𝐴)
11 simpl 108 . . . . . . . . . . . 12 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝐴 ⊆ ℂ)
1211, 10sseldd 3103 . . . . . . . . . . 11 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑢 ∈ ℂ)
1312negcld 8084 . . . . . . . . . 10 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → -𝑢 ∈ ℂ)
145, 9, 10, 13fvmptd3 5522 . . . . . . . . 9 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → (𝐹𝑢) = -𝑢)
15 negeq 7979 . . . . . . . . . 10 (𝑥 = 𝑣 → -𝑥 = -𝑣)
16 simprlr 528 . . . . . . . . . 10 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑣𝐴)
1711, 16sseldd 3103 . . . . . . . . . . 11 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑣 ∈ ℂ)
1817negcld 8084 . . . . . . . . . 10 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → -𝑣 ∈ ℂ)
195, 15, 16, 18fvmptd3 5522 . . . . . . . . 9 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → (𝐹𝑣) = -𝑣)
2014, 19oveq12d 5800 . . . . . . . 8 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → ((𝐹𝑢) − (𝐹𝑣)) = (-𝑢 − -𝑣))
2112, 17neg2subd 8114 . . . . . . . 8 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → (-𝑢 − -𝑣) = (𝑣𝑢))
2220, 21eqtrd 2173 . . . . . . 7 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → ((𝐹𝑢) − (𝐹𝑣)) = (𝑣𝑢))
2322fveq2d 5433 . . . . . 6 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → (abs‘((𝐹𝑢) − (𝐹𝑣))) = (abs‘(𝑣𝑢)))
2417, 12abssubd 10997 . . . . . 6 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → (abs‘(𝑣𝑢)) = (abs‘(𝑢𝑣)))
2523, 24eqtrd 2173 . . . . 5 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → (abs‘((𝐹𝑢) − (𝐹𝑣))) = (abs‘(𝑢𝑣)))
2625breq1d 3947 . . . 4 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → ((abs‘((𝐹𝑢) − (𝐹𝑣))) < 𝑒 ↔ (abs‘(𝑢𝑣)) < 𝑒))
2726exbiri 380 . . 3 (𝐴 ⊆ ℂ → (((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+) → ((abs‘(𝑢𝑣)) < 𝑒 → (abs‘((𝐹𝑢) − (𝐹𝑣))) < 𝑒)))
286, 8, 27elcncf1di 12774 . 2 (𝐴 ⊆ ℂ → ((𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → 𝐹 ∈ (𝐴cn→ℂ)))
291, 2, 28mp2and 430 1 (𝐴 ⊆ ℂ → 𝐹 ∈ (𝐴cn→ℂ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wcel 1481  wss 3076   class class class wbr 3937  cmpt 3997  cfv 5131  (class class class)co 5782  cc 7642   < clt 7824  cmin 7957  -cneg 7958  +crp 9470  abscabs 10801  cnccncf 12765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-po 4226  df-iso 4227  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-map 6552  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-2 8803  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-cncf 12766
This theorem is referenced by:  negfcncf  12797
  Copyright terms: Public domain W3C validator