ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negcncf GIF version

Theorem negcncf 14925
Description: The negative function is continuous. (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypothesis
Ref Expression
negcncf.1 𝐹 = (𝑥𝐴 ↦ -𝑥)
Assertion
Ref Expression
negcncf (𝐴 ⊆ ℂ → 𝐹 ∈ (𝐴cn→ℂ))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem negcncf
Dummy variables 𝑒 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . 2 (𝐴 ⊆ ℂ → 𝐴 ⊆ ℂ)
2 ssidd 3205 . 2 (𝐴 ⊆ ℂ → ℂ ⊆ ℂ)
3 ssel2 3179 . . . . 5 ((𝐴 ⊆ ℂ ∧ 𝑥𝐴) → 𝑥 ∈ ℂ)
43negcld 8341 . . . 4 ((𝐴 ⊆ ℂ ∧ 𝑥𝐴) → -𝑥 ∈ ℂ)
5 negcncf.1 . . . 4 𝐹 = (𝑥𝐴 ↦ -𝑥)
64, 5fmptd 5719 . . 3 (𝐴 ⊆ ℂ → 𝐹:𝐴⟶ℂ)
7 simpr 110 . . . 4 ((𝑢𝐴𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
87a1i 9 . . 3 (𝐴 ⊆ ℂ → ((𝑢𝐴𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+))
9 negeq 8236 . . . . . . . . . 10 (𝑥 = 𝑢 → -𝑥 = -𝑢)
10 simprll 537 . . . . . . . . . 10 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑢𝐴)
11 simpl 109 . . . . . . . . . . . 12 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝐴 ⊆ ℂ)
1211, 10sseldd 3185 . . . . . . . . . . 11 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑢 ∈ ℂ)
1312negcld 8341 . . . . . . . . . 10 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → -𝑢 ∈ ℂ)
145, 9, 10, 13fvmptd3 5658 . . . . . . . . 9 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → (𝐹𝑢) = -𝑢)
15 negeq 8236 . . . . . . . . . 10 (𝑥 = 𝑣 → -𝑥 = -𝑣)
16 simprlr 538 . . . . . . . . . 10 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑣𝐴)
1711, 16sseldd 3185 . . . . . . . . . . 11 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑣 ∈ ℂ)
1817negcld 8341 . . . . . . . . . 10 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → -𝑣 ∈ ℂ)
195, 15, 16, 18fvmptd3 5658 . . . . . . . . 9 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → (𝐹𝑣) = -𝑣)
2014, 19oveq12d 5943 . . . . . . . 8 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → ((𝐹𝑢) − (𝐹𝑣)) = (-𝑢 − -𝑣))
2112, 17neg2subd 8371 . . . . . . . 8 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → (-𝑢 − -𝑣) = (𝑣𝑢))
2220, 21eqtrd 2229 . . . . . . 7 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → ((𝐹𝑢) − (𝐹𝑣)) = (𝑣𝑢))
2322fveq2d 5565 . . . . . 6 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → (abs‘((𝐹𝑢) − (𝐹𝑣))) = (abs‘(𝑣𝑢)))
2417, 12abssubd 11375 . . . . . 6 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → (abs‘(𝑣𝑢)) = (abs‘(𝑢𝑣)))
2523, 24eqtrd 2229 . . . . 5 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → (abs‘((𝐹𝑢) − (𝐹𝑣))) = (abs‘(𝑢𝑣)))
2625breq1d 4044 . . . 4 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → ((abs‘((𝐹𝑢) − (𝐹𝑣))) < 𝑒 ↔ (abs‘(𝑢𝑣)) < 𝑒))
2726exbiri 382 . . 3 (𝐴 ⊆ ℂ → (((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+) → ((abs‘(𝑢𝑣)) < 𝑒 → (abs‘((𝐹𝑢) − (𝐹𝑣))) < 𝑒)))
286, 8, 27elcncf1di 14899 . 2 (𝐴 ⊆ ℂ → ((𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → 𝐹 ∈ (𝐴cn→ℂ)))
291, 2, 28mp2and 433 1 (𝐴 ⊆ ℂ → 𝐹 ∈ (𝐴cn→ℂ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wss 3157   class class class wbr 4034  cmpt 4095  cfv 5259  (class class class)co 5925  cc 7894   < clt 8078  cmin 8214  -cneg 8215  +crp 9745  abscabs 11179  cnccncf 14890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-map 6718  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-2 9066  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-cncf 14891
This theorem is referenced by:  negfcncf  14926
  Copyright terms: Public domain W3C validator