ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negcncf GIF version

Theorem negcncf 13228
Description: The negative function is continuous. (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypothesis
Ref Expression
negcncf.1 𝐹 = (𝑥𝐴 ↦ -𝑥)
Assertion
Ref Expression
negcncf (𝐴 ⊆ ℂ → 𝐹 ∈ (𝐴cn→ℂ))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem negcncf
Dummy variables 𝑒 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . 2 (𝐴 ⊆ ℂ → 𝐴 ⊆ ℂ)
2 ssidd 3163 . 2 (𝐴 ⊆ ℂ → ℂ ⊆ ℂ)
3 ssel2 3137 . . . . 5 ((𝐴 ⊆ ℂ ∧ 𝑥𝐴) → 𝑥 ∈ ℂ)
43negcld 8196 . . . 4 ((𝐴 ⊆ ℂ ∧ 𝑥𝐴) → -𝑥 ∈ ℂ)
5 negcncf.1 . . . 4 𝐹 = (𝑥𝐴 ↦ -𝑥)
64, 5fmptd 5639 . . 3 (𝐴 ⊆ ℂ → 𝐹:𝐴⟶ℂ)
7 simpr 109 . . . 4 ((𝑢𝐴𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
87a1i 9 . . 3 (𝐴 ⊆ ℂ → ((𝑢𝐴𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+))
9 negeq 8091 . . . . . . . . . 10 (𝑥 = 𝑢 → -𝑥 = -𝑢)
10 simprll 527 . . . . . . . . . 10 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑢𝐴)
11 simpl 108 . . . . . . . . . . . 12 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝐴 ⊆ ℂ)
1211, 10sseldd 3143 . . . . . . . . . . 11 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑢 ∈ ℂ)
1312negcld 8196 . . . . . . . . . 10 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → -𝑢 ∈ ℂ)
145, 9, 10, 13fvmptd3 5579 . . . . . . . . 9 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → (𝐹𝑢) = -𝑢)
15 negeq 8091 . . . . . . . . . 10 (𝑥 = 𝑣 → -𝑥 = -𝑣)
16 simprlr 528 . . . . . . . . . 10 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑣𝐴)
1711, 16sseldd 3143 . . . . . . . . . . 11 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑣 ∈ ℂ)
1817negcld 8196 . . . . . . . . . 10 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → -𝑣 ∈ ℂ)
195, 15, 16, 18fvmptd3 5579 . . . . . . . . 9 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → (𝐹𝑣) = -𝑣)
2014, 19oveq12d 5860 . . . . . . . 8 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → ((𝐹𝑢) − (𝐹𝑣)) = (-𝑢 − -𝑣))
2112, 17neg2subd 8226 . . . . . . . 8 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → (-𝑢 − -𝑣) = (𝑣𝑢))
2220, 21eqtrd 2198 . . . . . . 7 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → ((𝐹𝑢) − (𝐹𝑣)) = (𝑣𝑢))
2322fveq2d 5490 . . . . . 6 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → (abs‘((𝐹𝑢) − (𝐹𝑣))) = (abs‘(𝑣𝑢)))
2417, 12abssubd 11135 . . . . . 6 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → (abs‘(𝑣𝑢)) = (abs‘(𝑢𝑣)))
2523, 24eqtrd 2198 . . . . 5 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → (abs‘((𝐹𝑢) − (𝐹𝑣))) = (abs‘(𝑢𝑣)))
2625breq1d 3992 . . . 4 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → ((abs‘((𝐹𝑢) − (𝐹𝑣))) < 𝑒 ↔ (abs‘(𝑢𝑣)) < 𝑒))
2726exbiri 380 . . 3 (𝐴 ⊆ ℂ → (((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+) → ((abs‘(𝑢𝑣)) < 𝑒 → (abs‘((𝐹𝑢) − (𝐹𝑣))) < 𝑒)))
286, 8, 27elcncf1di 13206 . 2 (𝐴 ⊆ ℂ → ((𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → 𝐹 ∈ (𝐴cn→ℂ)))
291, 2, 28mp2and 430 1 (𝐴 ⊆ ℂ → 𝐹 ∈ (𝐴cn→ℂ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  wss 3116   class class class wbr 3982  cmpt 4043  cfv 5188  (class class class)co 5842  cc 7751   < clt 7933  cmin 8069  -cneg 8070  +crp 9589  abscabs 10939  cnccncf 13197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-map 6616  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-2 8916  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-cncf 13198
This theorem is referenced by:  negfcncf  13229
  Copyright terms: Public domain W3C validator