Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > negcncf | GIF version |
Description: The negative function is continuous. (Contributed by Mario Carneiro, 30-Dec-2016.) |
Ref | Expression |
---|---|
negcncf.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ -𝑥) |
Ref | Expression |
---|---|
negcncf | ⊢ (𝐴 ⊆ ℂ → 𝐹 ∈ (𝐴–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝐴 ⊆ ℂ → 𝐴 ⊆ ℂ) | |
2 | ssidd 3163 | . 2 ⊢ (𝐴 ⊆ ℂ → ℂ ⊆ ℂ) | |
3 | ssel2 3137 | . . . . 5 ⊢ ((𝐴 ⊆ ℂ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℂ) | |
4 | 3 | negcld 8196 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ 𝑥 ∈ 𝐴) → -𝑥 ∈ ℂ) |
5 | negcncf.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ -𝑥) | |
6 | 4, 5 | fmptd 5639 | . . 3 ⊢ (𝐴 ⊆ ℂ → 𝐹:𝐴⟶ℂ) |
7 | simpr 109 | . . . 4 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+) | |
8 | 7 | a1i 9 | . . 3 ⊢ (𝐴 ⊆ ℂ → ((𝑢 ∈ 𝐴 ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)) |
9 | negeq 8091 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑢 → -𝑥 = -𝑢) | |
10 | simprll 527 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑢 ∈ 𝐴) | |
11 | simpl 108 | . . . . . . . . . . . 12 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝐴 ⊆ ℂ) | |
12 | 11, 10 | sseldd 3143 | . . . . . . . . . . 11 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑢 ∈ ℂ) |
13 | 12 | negcld 8196 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → -𝑢 ∈ ℂ) |
14 | 5, 9, 10, 13 | fvmptd3 5579 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → (𝐹‘𝑢) = -𝑢) |
15 | negeq 8091 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑣 → -𝑥 = -𝑣) | |
16 | simprlr 528 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑣 ∈ 𝐴) | |
17 | 11, 16 | sseldd 3143 | . . . . . . . . . . 11 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑣 ∈ ℂ) |
18 | 17 | negcld 8196 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → -𝑣 ∈ ℂ) |
19 | 5, 15, 16, 18 | fvmptd3 5579 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → (𝐹‘𝑣) = -𝑣) |
20 | 14, 19 | oveq12d 5860 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → ((𝐹‘𝑢) − (𝐹‘𝑣)) = (-𝑢 − -𝑣)) |
21 | 12, 17 | neg2subd 8226 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → (-𝑢 − -𝑣) = (𝑣 − 𝑢)) |
22 | 20, 21 | eqtrd 2198 | . . . . . . 7 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → ((𝐹‘𝑢) − (𝐹‘𝑣)) = (𝑣 − 𝑢)) |
23 | 22 | fveq2d 5490 | . . . . . 6 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → (abs‘((𝐹‘𝑢) − (𝐹‘𝑣))) = (abs‘(𝑣 − 𝑢))) |
24 | 17, 12 | abssubd 11135 | . . . . . 6 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → (abs‘(𝑣 − 𝑢)) = (abs‘(𝑢 − 𝑣))) |
25 | 23, 24 | eqtrd 2198 | . . . . 5 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → (abs‘((𝐹‘𝑢) − (𝐹‘𝑣))) = (abs‘(𝑢 − 𝑣))) |
26 | 25 | breq1d 3992 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → ((abs‘((𝐹‘𝑢) − (𝐹‘𝑣))) < 𝑒 ↔ (abs‘(𝑢 − 𝑣)) < 𝑒)) |
27 | 26 | exbiri 380 | . . 3 ⊢ (𝐴 ⊆ ℂ → (((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+) → ((abs‘(𝑢 − 𝑣)) < 𝑒 → (abs‘((𝐹‘𝑢) − (𝐹‘𝑣))) < 𝑒))) |
28 | 6, 8, 27 | elcncf1di 13206 | . 2 ⊢ (𝐴 ⊆ ℂ → ((𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → 𝐹 ∈ (𝐴–cn→ℂ))) |
29 | 1, 2, 28 | mp2and 430 | 1 ⊢ (𝐴 ⊆ ℂ → 𝐹 ∈ (𝐴–cn→ℂ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 ⊆ wss 3116 class class class wbr 3982 ↦ cmpt 4043 ‘cfv 5188 (class class class)co 5842 ℂcc 7751 < clt 7933 − cmin 8069 -cneg 8070 ℝ+crp 9589 abscabs 10939 –cn→ccncf 13197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-map 6616 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-2 8916 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-cncf 13198 |
This theorem is referenced by: negfcncf 13229 |
Copyright terms: Public domain | W3C validator |