![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > negcncf | GIF version |
Description: The negative function is continuous. (Contributed by Mario Carneiro, 30-Dec-2016.) |
Ref | Expression |
---|---|
negcncf.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ -𝑥) |
Ref | Expression |
---|---|
negcncf | ⊢ (𝐴 ⊆ ℂ → 𝐹 ∈ (𝐴–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝐴 ⊆ ℂ → 𝐴 ⊆ ℂ) | |
2 | ssidd 3068 | . 2 ⊢ (𝐴 ⊆ ℂ → ℂ ⊆ ℂ) | |
3 | ssel2 3042 | . . . . 5 ⊢ ((𝐴 ⊆ ℂ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℂ) | |
4 | 3 | negcld 7931 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ 𝑥 ∈ 𝐴) → -𝑥 ∈ ℂ) |
5 | negcncf.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ -𝑥) | |
6 | 4, 5 | fmptd 5506 | . . 3 ⊢ (𝐴 ⊆ ℂ → 𝐹:𝐴⟶ℂ) |
7 | simpr 109 | . . . 4 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+) | |
8 | 7 | a1i 9 | . . 3 ⊢ (𝐴 ⊆ ℂ → ((𝑢 ∈ 𝐴 ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)) |
9 | negeq 7826 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑢 → -𝑥 = -𝑢) | |
10 | simprll 507 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑢 ∈ 𝐴) | |
11 | simpl 108 | . . . . . . . . . . . 12 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝐴 ⊆ ℂ) | |
12 | 11, 10 | sseldd 3048 | . . . . . . . . . . 11 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑢 ∈ ℂ) |
13 | 12 | negcld 7931 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → -𝑢 ∈ ℂ) |
14 | 5, 9, 10, 13 | fvmptd3 5446 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → (𝐹‘𝑢) = -𝑢) |
15 | negeq 7826 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑣 → -𝑥 = -𝑣) | |
16 | simprlr 508 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑣 ∈ 𝐴) | |
17 | 11, 16 | sseldd 3048 | . . . . . . . . . . 11 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑣 ∈ ℂ) |
18 | 17 | negcld 7931 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → -𝑣 ∈ ℂ) |
19 | 5, 15, 16, 18 | fvmptd3 5446 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → (𝐹‘𝑣) = -𝑣) |
20 | 14, 19 | oveq12d 5724 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → ((𝐹‘𝑢) − (𝐹‘𝑣)) = (-𝑢 − -𝑣)) |
21 | 12, 17 | neg2subd 7961 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → (-𝑢 − -𝑣) = (𝑣 − 𝑢)) |
22 | 20, 21 | eqtrd 2132 | . . . . . . 7 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → ((𝐹‘𝑢) − (𝐹‘𝑣)) = (𝑣 − 𝑢)) |
23 | 22 | fveq2d 5357 | . . . . . 6 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → (abs‘((𝐹‘𝑢) − (𝐹‘𝑣))) = (abs‘(𝑣 − 𝑢))) |
24 | 17, 12 | abssubd 10805 | . . . . . 6 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → (abs‘(𝑣 − 𝑢)) = (abs‘(𝑢 − 𝑣))) |
25 | 23, 24 | eqtrd 2132 | . . . . 5 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → (abs‘((𝐹‘𝑢) − (𝐹‘𝑣))) = (abs‘(𝑢 − 𝑣))) |
26 | 25 | breq1d 3885 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → ((abs‘((𝐹‘𝑢) − (𝐹‘𝑣))) < 𝑒 ↔ (abs‘(𝑢 − 𝑣)) < 𝑒)) |
27 | 26 | exbiri 377 | . . 3 ⊢ (𝐴 ⊆ ℂ → (((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+) → ((abs‘(𝑢 − 𝑣)) < 𝑒 → (abs‘((𝐹‘𝑢) − (𝐹‘𝑣))) < 𝑒))) |
28 | 6, 8, 27 | elcncf1di 12479 | . 2 ⊢ (𝐴 ⊆ ℂ → ((𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → 𝐹 ∈ (𝐴–cn→ℂ))) |
29 | 1, 2, 28 | mp2and 427 | 1 ⊢ (𝐴 ⊆ ℂ → 𝐹 ∈ (𝐴–cn→ℂ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1299 ∈ wcel 1448 ⊆ wss 3021 class class class wbr 3875 ↦ cmpt 3929 ‘cfv 5059 (class class class)co 5706 ℂcc 7498 < clt 7672 − cmin 7804 -cneg 7805 ℝ+crp 9291 abscabs 10609 –cn→ccncf 12470 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-coll 3983 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-cnex 7586 ax-resscn 7587 ax-1cn 7588 ax-1re 7589 ax-icn 7590 ax-addcl 7591 ax-addrcl 7592 ax-mulcl 7593 ax-mulrcl 7594 ax-addcom 7595 ax-mulcom 7596 ax-addass 7597 ax-mulass 7598 ax-distr 7599 ax-i2m1 7600 ax-0lt1 7601 ax-1rid 7602 ax-0id 7603 ax-rnegex 7604 ax-precex 7605 ax-cnre 7606 ax-pre-ltirr 7607 ax-pre-ltwlin 7608 ax-pre-lttrn 7609 ax-pre-apti 7610 ax-pre-ltadd 7611 ax-pre-mulgt0 7612 ax-pre-mulext 7613 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-nel 2363 df-ral 2380 df-rex 2381 df-reu 2382 df-rmo 2383 df-rab 2384 df-v 2643 df-sbc 2863 df-csb 2956 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-iun 3762 df-br 3876 df-opab 3930 df-mpt 3931 df-id 4153 df-po 4156 df-iso 4157 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 df-iota 5024 df-fun 5061 df-fn 5062 df-f 5063 df-f1 5064 df-fo 5065 df-f1o 5066 df-fv 5067 df-riota 5662 df-ov 5709 df-oprab 5710 df-mpo 5711 df-map 6474 df-pnf 7674 df-mnf 7675 df-xr 7676 df-ltxr 7677 df-le 7678 df-sub 7806 df-neg 7807 df-reap 8203 df-ap 8210 df-div 8294 df-2 8637 df-cj 10455 df-re 10456 df-im 10457 df-rsqrt 10610 df-abs 10611 df-cncf 12471 |
This theorem is referenced by: negfcncf 12501 |
Copyright terms: Public domain | W3C validator |