Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > negcncf | GIF version |
Description: The negative function is continuous. (Contributed by Mario Carneiro, 30-Dec-2016.) |
Ref | Expression |
---|---|
negcncf.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ -𝑥) |
Ref | Expression |
---|---|
negcncf | ⊢ (𝐴 ⊆ ℂ → 𝐹 ∈ (𝐴–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝐴 ⊆ ℂ → 𝐴 ⊆ ℂ) | |
2 | ssidd 3168 | . 2 ⊢ (𝐴 ⊆ ℂ → ℂ ⊆ ℂ) | |
3 | ssel2 3142 | . . . . 5 ⊢ ((𝐴 ⊆ ℂ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℂ) | |
4 | 3 | negcld 8217 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ 𝑥 ∈ 𝐴) → -𝑥 ∈ ℂ) |
5 | negcncf.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ -𝑥) | |
6 | 4, 5 | fmptd 5650 | . . 3 ⊢ (𝐴 ⊆ ℂ → 𝐹:𝐴⟶ℂ) |
7 | simpr 109 | . . . 4 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+) | |
8 | 7 | a1i 9 | . . 3 ⊢ (𝐴 ⊆ ℂ → ((𝑢 ∈ 𝐴 ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)) |
9 | negeq 8112 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑢 → -𝑥 = -𝑢) | |
10 | simprll 532 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑢 ∈ 𝐴) | |
11 | simpl 108 | . . . . . . . . . . . 12 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝐴 ⊆ ℂ) | |
12 | 11, 10 | sseldd 3148 | . . . . . . . . . . 11 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑢 ∈ ℂ) |
13 | 12 | negcld 8217 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → -𝑢 ∈ ℂ) |
14 | 5, 9, 10, 13 | fvmptd3 5589 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → (𝐹‘𝑢) = -𝑢) |
15 | negeq 8112 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑣 → -𝑥 = -𝑣) | |
16 | simprlr 533 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑣 ∈ 𝐴) | |
17 | 11, 16 | sseldd 3148 | . . . . . . . . . . 11 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑣 ∈ ℂ) |
18 | 17 | negcld 8217 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → -𝑣 ∈ ℂ) |
19 | 5, 15, 16, 18 | fvmptd3 5589 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → (𝐹‘𝑣) = -𝑣) |
20 | 14, 19 | oveq12d 5871 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → ((𝐹‘𝑢) − (𝐹‘𝑣)) = (-𝑢 − -𝑣)) |
21 | 12, 17 | neg2subd 8247 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → (-𝑢 − -𝑣) = (𝑣 − 𝑢)) |
22 | 20, 21 | eqtrd 2203 | . . . . . . 7 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → ((𝐹‘𝑢) − (𝐹‘𝑣)) = (𝑣 − 𝑢)) |
23 | 22 | fveq2d 5500 | . . . . . 6 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → (abs‘((𝐹‘𝑢) − (𝐹‘𝑣))) = (abs‘(𝑣 − 𝑢))) |
24 | 17, 12 | abssubd 11157 | . . . . . 6 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → (abs‘(𝑣 − 𝑢)) = (abs‘(𝑢 − 𝑣))) |
25 | 23, 24 | eqtrd 2203 | . . . . 5 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → (abs‘((𝐹‘𝑢) − (𝐹‘𝑣))) = (abs‘(𝑢 − 𝑣))) |
26 | 25 | breq1d 3999 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+)) → ((abs‘((𝐹‘𝑢) − (𝐹‘𝑣))) < 𝑒 ↔ (abs‘(𝑢 − 𝑣)) < 𝑒)) |
27 | 26 | exbiri 380 | . . 3 ⊢ (𝐴 ⊆ ℂ → (((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑒 ∈ ℝ+) → ((abs‘(𝑢 − 𝑣)) < 𝑒 → (abs‘((𝐹‘𝑢) − (𝐹‘𝑣))) < 𝑒))) |
28 | 6, 8, 27 | elcncf1di 13360 | . 2 ⊢ (𝐴 ⊆ ℂ → ((𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → 𝐹 ∈ (𝐴–cn→ℂ))) |
29 | 1, 2, 28 | mp2and 431 | 1 ⊢ (𝐴 ⊆ ℂ → 𝐹 ∈ (𝐴–cn→ℂ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 ⊆ wss 3121 class class class wbr 3989 ↦ cmpt 4050 ‘cfv 5198 (class class class)co 5853 ℂcc 7772 < clt 7954 − cmin 8090 -cneg 8091 ℝ+crp 9610 abscabs 10961 –cn→ccncf 13351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-map 6628 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-2 8937 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-cncf 13352 |
This theorem is referenced by: negfcncf 13383 |
Copyright terms: Public domain | W3C validator |