ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negcncf GIF version

Theorem negcncf 12500
Description: The negative function is continuous. (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypothesis
Ref Expression
negcncf.1 𝐹 = (𝑥𝐴 ↦ -𝑥)
Assertion
Ref Expression
negcncf (𝐴 ⊆ ℂ → 𝐹 ∈ (𝐴cn→ℂ))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem negcncf
Dummy variables 𝑒 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . 2 (𝐴 ⊆ ℂ → 𝐴 ⊆ ℂ)
2 ssidd 3068 . 2 (𝐴 ⊆ ℂ → ℂ ⊆ ℂ)
3 ssel2 3042 . . . . 5 ((𝐴 ⊆ ℂ ∧ 𝑥𝐴) → 𝑥 ∈ ℂ)
43negcld 7931 . . . 4 ((𝐴 ⊆ ℂ ∧ 𝑥𝐴) → -𝑥 ∈ ℂ)
5 negcncf.1 . . . 4 𝐹 = (𝑥𝐴 ↦ -𝑥)
64, 5fmptd 5506 . . 3 (𝐴 ⊆ ℂ → 𝐹:𝐴⟶ℂ)
7 simpr 109 . . . 4 ((𝑢𝐴𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
87a1i 9 . . 3 (𝐴 ⊆ ℂ → ((𝑢𝐴𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+))
9 negeq 7826 . . . . . . . . . 10 (𝑥 = 𝑢 → -𝑥 = -𝑢)
10 simprll 507 . . . . . . . . . 10 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑢𝐴)
11 simpl 108 . . . . . . . . . . . 12 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝐴 ⊆ ℂ)
1211, 10sseldd 3048 . . . . . . . . . . 11 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑢 ∈ ℂ)
1312negcld 7931 . . . . . . . . . 10 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → -𝑢 ∈ ℂ)
145, 9, 10, 13fvmptd3 5446 . . . . . . . . 9 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → (𝐹𝑢) = -𝑢)
15 negeq 7826 . . . . . . . . . 10 (𝑥 = 𝑣 → -𝑥 = -𝑣)
16 simprlr 508 . . . . . . . . . 10 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑣𝐴)
1711, 16sseldd 3048 . . . . . . . . . . 11 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → 𝑣 ∈ ℂ)
1817negcld 7931 . . . . . . . . . 10 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → -𝑣 ∈ ℂ)
195, 15, 16, 18fvmptd3 5446 . . . . . . . . 9 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → (𝐹𝑣) = -𝑣)
2014, 19oveq12d 5724 . . . . . . . 8 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → ((𝐹𝑢) − (𝐹𝑣)) = (-𝑢 − -𝑣))
2112, 17neg2subd 7961 . . . . . . . 8 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → (-𝑢 − -𝑣) = (𝑣𝑢))
2220, 21eqtrd 2132 . . . . . . 7 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → ((𝐹𝑢) − (𝐹𝑣)) = (𝑣𝑢))
2322fveq2d 5357 . . . . . 6 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → (abs‘((𝐹𝑢) − (𝐹𝑣))) = (abs‘(𝑣𝑢)))
2417, 12abssubd 10805 . . . . . 6 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → (abs‘(𝑣𝑢)) = (abs‘(𝑢𝑣)))
2523, 24eqtrd 2132 . . . . 5 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → (abs‘((𝐹𝑢) − (𝐹𝑣))) = (abs‘(𝑢𝑣)))
2625breq1d 3885 . . . 4 ((𝐴 ⊆ ℂ ∧ ((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+)) → ((abs‘((𝐹𝑢) − (𝐹𝑣))) < 𝑒 ↔ (abs‘(𝑢𝑣)) < 𝑒))
2726exbiri 377 . . 3 (𝐴 ⊆ ℂ → (((𝑢𝐴𝑣𝐴) ∧ 𝑒 ∈ ℝ+) → ((abs‘(𝑢𝑣)) < 𝑒 → (abs‘((𝐹𝑢) − (𝐹𝑣))) < 𝑒)))
286, 8, 27elcncf1di 12479 . 2 (𝐴 ⊆ ℂ → ((𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → 𝐹 ∈ (𝐴cn→ℂ)))
291, 2, 28mp2and 427 1 (𝐴 ⊆ ℂ → 𝐹 ∈ (𝐴cn→ℂ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1299  wcel 1448  wss 3021   class class class wbr 3875  cmpt 3929  cfv 5059  (class class class)co 5706  cc 7498   < clt 7672  cmin 7804  -cneg 7805  +crp 9291  abscabs 10609  cnccncf 12470
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-po 4156  df-iso 4157  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-map 6474  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-2 8637  df-cj 10455  df-re 10456  df-im 10457  df-rsqrt 10610  df-abs 10611  df-cncf 12471
This theorem is referenced by:  negfcncf  12501
  Copyright terms: Public domain W3C validator