| Step | Hyp | Ref
| Expression |
| 1 | | monoord2.1 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 2 | | monoord2.2 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ) |
| 3 | 2 | renegcld 8406 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → -(𝐹‘𝑘) ∈ ℝ) |
| 4 | | eqid 2196 |
. . . . . 6
⊢ (𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘)) = (𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘)) |
| 5 | 3, 4 | fmptd 5716 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘)):(𝑀...𝑁)⟶ℝ) |
| 6 | 5 | ffvelcdmda 5697 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝑁)) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑛) ∈ ℝ) |
| 7 | | monoord2.3 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
| 8 | 7 | ralrimiva 2570 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
| 9 | | oveq1 5929 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑛 → (𝑘 + 1) = (𝑛 + 1)) |
| 10 | 9 | fveq2d 5562 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1))) |
| 11 | | fveq2 5558 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑛 → (𝐹‘𝑘) = (𝐹‘𝑛)) |
| 12 | 10, 11 | breq12d 4046 |
. . . . . . . . 9
⊢ (𝑘 = 𝑛 → ((𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘) ↔ (𝐹‘(𝑛 + 1)) ≤ (𝐹‘𝑛))) |
| 13 | 12 | cbvralv 2729 |
. . . . . . . 8
⊢
(∀𝑘 ∈
(𝑀...(𝑁 − 1))(𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘) ↔ ∀𝑛 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑛 + 1)) ≤ (𝐹‘𝑛)) |
| 14 | 8, 13 | sylib 122 |
. . . . . . 7
⊢ (𝜑 → ∀𝑛 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑛 + 1)) ≤ (𝐹‘𝑛)) |
| 15 | 14 | r19.21bi 2585 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑛 + 1)) ≤ (𝐹‘𝑛)) |
| 16 | | fveq2 5558 |
. . . . . . . . 9
⊢ (𝑘 = (𝑛 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑛 + 1))) |
| 17 | 16 | eleq1d 2265 |
. . . . . . . 8
⊢ (𝑘 = (𝑛 + 1) → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘(𝑛 + 1)) ∈ ℝ)) |
| 18 | 2 | ralrimiva 2570 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ) |
| 19 | 18 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ) |
| 20 | | fzp1elp1 10150 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (𝑀...(𝑁 − 1)) → (𝑛 + 1) ∈ (𝑀...((𝑁 − 1) + 1))) |
| 21 | 20 | adantl 277 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛 + 1) ∈ (𝑀...((𝑁 − 1) + 1))) |
| 22 | | eluzelz 9610 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
| 23 | 1, 22 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 24 | 23 | zcnd 9449 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 25 | | ax-1cn 7972 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℂ |
| 26 | | npcan 8235 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 −
1) + 1) = 𝑁) |
| 27 | 24, 25, 26 | sylancl 413 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑁 − 1) + 1) = 𝑁) |
| 28 | 27 | oveq2d 5938 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁)) |
| 29 | 28 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁)) |
| 30 | 21, 29 | eleqtrd 2275 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛 + 1) ∈ (𝑀...𝑁)) |
| 31 | 17, 19, 30 | rspcdva 2873 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑛 + 1)) ∈ ℝ) |
| 32 | 11 | eleq1d 2265 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘𝑛) ∈ ℝ)) |
| 33 | | fzssp1 10142 |
. . . . . . . . . 10
⊢ (𝑀...(𝑁 − 1)) ⊆ (𝑀...((𝑁 − 1) + 1)) |
| 34 | 33, 28 | sseqtrid 3233 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀...(𝑁 − 1)) ⊆ (𝑀...𝑁)) |
| 35 | 34 | sselda 3183 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑛 ∈ (𝑀...𝑁)) |
| 36 | 32, 19, 35 | rspcdva 2873 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑛) ∈ ℝ) |
| 37 | 31, 36 | lenegd 8551 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝐹‘(𝑛 + 1)) ≤ (𝐹‘𝑛) ↔ -(𝐹‘𝑛) ≤ -(𝐹‘(𝑛 + 1)))) |
| 38 | 15, 37 | mpbid 147 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → -(𝐹‘𝑛) ≤ -(𝐹‘(𝑛 + 1))) |
| 39 | 36 | renegcld 8406 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → -(𝐹‘𝑛) ∈ ℝ) |
| 40 | 11 | negeqd 8221 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → -(𝐹‘𝑘) = -(𝐹‘𝑛)) |
| 41 | 40, 4 | fvmptg 5637 |
. . . . . 6
⊢ ((𝑛 ∈ (𝑀...𝑁) ∧ -(𝐹‘𝑛) ∈ ℝ) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑛) = -(𝐹‘𝑛)) |
| 42 | 35, 39, 41 | syl2anc 411 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑛) = -(𝐹‘𝑛)) |
| 43 | 31 | renegcld 8406 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → -(𝐹‘(𝑛 + 1)) ∈ ℝ) |
| 44 | 16 | negeqd 8221 |
. . . . . . 7
⊢ (𝑘 = (𝑛 + 1) → -(𝐹‘𝑘) = -(𝐹‘(𝑛 + 1))) |
| 45 | 44, 4 | fvmptg 5637 |
. . . . . 6
⊢ (((𝑛 + 1) ∈ (𝑀...𝑁) ∧ -(𝐹‘(𝑛 + 1)) ∈ ℝ) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘(𝑛 + 1)) = -(𝐹‘(𝑛 + 1))) |
| 46 | 30, 43, 45 | syl2anc 411 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘(𝑛 + 1)) = -(𝐹‘(𝑛 + 1))) |
| 47 | 38, 42, 46 | 3brtr4d 4065 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑛) ≤ ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘(𝑛 + 1))) |
| 48 | 1, 6, 47 | monoord 10577 |
. . 3
⊢ (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑀) ≤ ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑁)) |
| 49 | | eluzfz1 10106 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
| 50 | 1, 49 | syl 14 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
| 51 | | fveq2 5558 |
. . . . . . 7
⊢ (𝑘 = 𝑀 → (𝐹‘𝑘) = (𝐹‘𝑀)) |
| 52 | 51 | eleq1d 2265 |
. . . . . 6
⊢ (𝑘 = 𝑀 → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘𝑀) ∈ ℝ)) |
| 53 | 52, 18, 50 | rspcdva 2873 |
. . . . 5
⊢ (𝜑 → (𝐹‘𝑀) ∈ ℝ) |
| 54 | 53 | renegcld 8406 |
. . . 4
⊢ (𝜑 → -(𝐹‘𝑀) ∈ ℝ) |
| 55 | 51 | negeqd 8221 |
. . . . 5
⊢ (𝑘 = 𝑀 → -(𝐹‘𝑘) = -(𝐹‘𝑀)) |
| 56 | 55, 4 | fvmptg 5637 |
. . . 4
⊢ ((𝑀 ∈ (𝑀...𝑁) ∧ -(𝐹‘𝑀) ∈ ℝ) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑀) = -(𝐹‘𝑀)) |
| 57 | 50, 54, 56 | syl2anc 411 |
. . 3
⊢ (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑀) = -(𝐹‘𝑀)) |
| 58 | | eluzfz2 10107 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
| 59 | 1, 58 | syl 14 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) |
| 60 | | fveq2 5558 |
. . . . . . 7
⊢ (𝑘 = 𝑁 → (𝐹‘𝑘) = (𝐹‘𝑁)) |
| 61 | 60 | eleq1d 2265 |
. . . . . 6
⊢ (𝑘 = 𝑁 → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘𝑁) ∈ ℝ)) |
| 62 | 61, 18, 59 | rspcdva 2873 |
. . . . 5
⊢ (𝜑 → (𝐹‘𝑁) ∈ ℝ) |
| 63 | 62 | renegcld 8406 |
. . . 4
⊢ (𝜑 → -(𝐹‘𝑁) ∈ ℝ) |
| 64 | 60 | negeqd 8221 |
. . . . 5
⊢ (𝑘 = 𝑁 → -(𝐹‘𝑘) = -(𝐹‘𝑁)) |
| 65 | 64, 4 | fvmptg 5637 |
. . . 4
⊢ ((𝑁 ∈ (𝑀...𝑁) ∧ -(𝐹‘𝑁) ∈ ℝ) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑁) = -(𝐹‘𝑁)) |
| 66 | 59, 63, 65 | syl2anc 411 |
. . 3
⊢ (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹‘𝑘))‘𝑁) = -(𝐹‘𝑁)) |
| 67 | 48, 57, 66 | 3brtr3d 4064 |
. 2
⊢ (𝜑 → -(𝐹‘𝑀) ≤ -(𝐹‘𝑁)) |
| 68 | 62, 53 | lenegd 8551 |
. 2
⊢ (𝜑 → ((𝐹‘𝑁) ≤ (𝐹‘𝑀) ↔ -(𝐹‘𝑀) ≤ -(𝐹‘𝑁))) |
| 69 | 67, 68 | mpbird 167 |
1
⊢ (𝜑 → (𝐹‘𝑁) ≤ (𝐹‘𝑀)) |