ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  monoord2 GIF version

Theorem monoord2 10412
Description: Ordering relation for a monotonic sequence, decreasing case. (Contributed by Mario Carneiro, 18-Jul-2014.)
Hypotheses
Ref Expression
monoord2.1 (𝜑𝑁 ∈ (ℤ𝑀))
monoord2.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
monoord2.3 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
Assertion
Ref Expression
monoord2 (𝜑 → (𝐹𝑁) ≤ (𝐹𝑀))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem monoord2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 monoord2.1 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
2 monoord2.2 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
32renegcld 8278 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → -(𝐹𝑘) ∈ ℝ)
4 eqid 2165 . . . . . 6 (𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘)) = (𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))
53, 4fmptd 5639 . . . . 5 (𝜑 → (𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘)):(𝑀...𝑁)⟶ℝ)
65ffvelrnda 5620 . . . 4 ((𝜑𝑛 ∈ (𝑀...𝑁)) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑛) ∈ ℝ)
7 monoord2.3 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
87ralrimiva 2539 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
9 oveq1 5849 . . . . . . . . . . 11 (𝑘 = 𝑛 → (𝑘 + 1) = (𝑛 + 1))
109fveq2d 5490 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1)))
11 fveq2 5486 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
1210, 11breq12d 3995 . . . . . . . . 9 (𝑘 = 𝑛 → ((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ↔ (𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛)))
1312cbvralv 2692 . . . . . . . 8 (∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ↔ ∀𝑛 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
148, 13sylib 121 . . . . . . 7 (𝜑 → ∀𝑛 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
1514r19.21bi 2554 . . . . . 6 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
16 fveq2 5486 . . . . . . . . 9 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
1716eleq1d 2235 . . . . . . . 8 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(𝑛 + 1)) ∈ ℝ))
182ralrimiva 2539 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ)
1918adantr 274 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ)
20 fzp1elp1 10010 . . . . . . . . . 10 (𝑛 ∈ (𝑀...(𝑁 − 1)) → (𝑛 + 1) ∈ (𝑀...((𝑁 − 1) + 1)))
2120adantl 275 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛 + 1) ∈ (𝑀...((𝑁 − 1) + 1)))
22 eluzelz 9475 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
231, 22syl 14 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℤ)
2423zcnd 9314 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
25 ax-1cn 7846 . . . . . . . . . . . 12 1 ∈ ℂ
26 npcan 8107 . . . . . . . . . . . 12 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
2724, 25, 26sylancl 410 . . . . . . . . . . 11 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
2827oveq2d 5858 . . . . . . . . . 10 (𝜑 → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁))
2928adantr 274 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁))
3021, 29eleqtrd 2245 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛 + 1) ∈ (𝑀...𝑁))
3117, 19, 30rspcdva 2835 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
3211eleq1d 2235 . . . . . . . 8 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑛) ∈ ℝ))
33 fzssp1 10002 . . . . . . . . . 10 (𝑀...(𝑁 − 1)) ⊆ (𝑀...((𝑁 − 1) + 1))
3433, 28sseqtrid 3192 . . . . . . . . 9 (𝜑 → (𝑀...(𝑁 − 1)) ⊆ (𝑀...𝑁))
3534sselda 3142 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑛 ∈ (𝑀...𝑁))
3632, 19, 35rspcdva 2835 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑛) ∈ ℝ)
3731, 36lenegd 8422 . . . . . 6 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛) ↔ -(𝐹𝑛) ≤ -(𝐹‘(𝑛 + 1))))
3815, 37mpbid 146 . . . . 5 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → -(𝐹𝑛) ≤ -(𝐹‘(𝑛 + 1)))
3936renegcld 8278 . . . . . 6 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → -(𝐹𝑛) ∈ ℝ)
4011negeqd 8093 . . . . . . 7 (𝑘 = 𝑛 → -(𝐹𝑘) = -(𝐹𝑛))
4140, 4fvmptg 5562 . . . . . 6 ((𝑛 ∈ (𝑀...𝑁) ∧ -(𝐹𝑛) ∈ ℝ) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑛) = -(𝐹𝑛))
4235, 39, 41syl2anc 409 . . . . 5 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑛) = -(𝐹𝑛))
4331renegcld 8278 . . . . . 6 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → -(𝐹‘(𝑛 + 1)) ∈ ℝ)
4416negeqd 8093 . . . . . . 7 (𝑘 = (𝑛 + 1) → -(𝐹𝑘) = -(𝐹‘(𝑛 + 1)))
4544, 4fvmptg 5562 . . . . . 6 (((𝑛 + 1) ∈ (𝑀...𝑁) ∧ -(𝐹‘(𝑛 + 1)) ∈ ℝ) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘(𝑛 + 1)) = -(𝐹‘(𝑛 + 1)))
4630, 43, 45syl2anc 409 . . . . 5 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘(𝑛 + 1)) = -(𝐹‘(𝑛 + 1)))
4738, 42, 463brtr4d 4014 . . . 4 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑛) ≤ ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘(𝑛 + 1)))
481, 6, 47monoord 10411 . . 3 (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑀) ≤ ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑁))
49 eluzfz1 9966 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
501, 49syl 14 . . . 4 (𝜑𝑀 ∈ (𝑀...𝑁))
51 fveq2 5486 . . . . . . 7 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
5251eleq1d 2235 . . . . . 6 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑀) ∈ ℝ))
5352, 18, 50rspcdva 2835 . . . . 5 (𝜑 → (𝐹𝑀) ∈ ℝ)
5453renegcld 8278 . . . 4 (𝜑 → -(𝐹𝑀) ∈ ℝ)
5551negeqd 8093 . . . . 5 (𝑘 = 𝑀 → -(𝐹𝑘) = -(𝐹𝑀))
5655, 4fvmptg 5562 . . . 4 ((𝑀 ∈ (𝑀...𝑁) ∧ -(𝐹𝑀) ∈ ℝ) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑀) = -(𝐹𝑀))
5750, 54, 56syl2anc 409 . . 3 (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑀) = -(𝐹𝑀))
58 eluzfz2 9967 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
591, 58syl 14 . . . 4 (𝜑𝑁 ∈ (𝑀...𝑁))
60 fveq2 5486 . . . . . . 7 (𝑘 = 𝑁 → (𝐹𝑘) = (𝐹𝑁))
6160eleq1d 2235 . . . . . 6 (𝑘 = 𝑁 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑁) ∈ ℝ))
6261, 18, 59rspcdva 2835 . . . . 5 (𝜑 → (𝐹𝑁) ∈ ℝ)
6362renegcld 8278 . . . 4 (𝜑 → -(𝐹𝑁) ∈ ℝ)
6460negeqd 8093 . . . . 5 (𝑘 = 𝑁 → -(𝐹𝑘) = -(𝐹𝑁))
6564, 4fvmptg 5562 . . . 4 ((𝑁 ∈ (𝑀...𝑁) ∧ -(𝐹𝑁) ∈ ℝ) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑁) = -(𝐹𝑁))
6659, 63, 65syl2anc 409 . . 3 (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑁) = -(𝐹𝑁))
6748, 57, 663brtr3d 4013 . 2 (𝜑 → -(𝐹𝑀) ≤ -(𝐹𝑁))
6862, 53lenegd 8422 . 2 (𝜑 → ((𝐹𝑁) ≤ (𝐹𝑀) ↔ -(𝐹𝑀) ≤ -(𝐹𝑁)))
6967, 68mpbird 166 1 (𝜑 → (𝐹𝑁) ≤ (𝐹𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  wral 2444   class class class wbr 3982  cmpt 4043  cfv 5188  (class class class)co 5842  cc 7751  cr 7752  1c1 7754   + caddc 7756  cle 7934  cmin 8069  -cneg 8070  cz 9191  cuz 9466  ...cfz 9944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator