ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  monoord2 GIF version

Theorem monoord2 10463
Description: Ordering relation for a monotonic sequence, decreasing case. (Contributed by Mario Carneiro, 18-Jul-2014.)
Hypotheses
Ref Expression
monoord2.1 (𝜑𝑁 ∈ (ℤ𝑀))
monoord2.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
monoord2.3 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
Assertion
Ref Expression
monoord2 (𝜑 → (𝐹𝑁) ≤ (𝐹𝑀))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem monoord2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 monoord2.1 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
2 monoord2.2 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
32renegcld 8327 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → -(𝐹𝑘) ∈ ℝ)
4 eqid 2177 . . . . . 6 (𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘)) = (𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))
53, 4fmptd 5666 . . . . 5 (𝜑 → (𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘)):(𝑀...𝑁)⟶ℝ)
65ffvelcdmda 5647 . . . 4 ((𝜑𝑛 ∈ (𝑀...𝑁)) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑛) ∈ ℝ)
7 monoord2.3 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
87ralrimiva 2550 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
9 oveq1 5876 . . . . . . . . . . 11 (𝑘 = 𝑛 → (𝑘 + 1) = (𝑛 + 1))
109fveq2d 5515 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1)))
11 fveq2 5511 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
1210, 11breq12d 4013 . . . . . . . . 9 (𝑘 = 𝑛 → ((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ↔ (𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛)))
1312cbvralv 2703 . . . . . . . 8 (∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ↔ ∀𝑛 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
148, 13sylib 122 . . . . . . 7 (𝜑 → ∀𝑛 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
1514r19.21bi 2565 . . . . . 6 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
16 fveq2 5511 . . . . . . . . 9 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
1716eleq1d 2246 . . . . . . . 8 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(𝑛 + 1)) ∈ ℝ))
182ralrimiva 2550 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ)
1918adantr 276 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ)
20 fzp1elp1 10061 . . . . . . . . . 10 (𝑛 ∈ (𝑀...(𝑁 − 1)) → (𝑛 + 1) ∈ (𝑀...((𝑁 − 1) + 1)))
2120adantl 277 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛 + 1) ∈ (𝑀...((𝑁 − 1) + 1)))
22 eluzelz 9526 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
231, 22syl 14 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℤ)
2423zcnd 9365 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
25 ax-1cn 7895 . . . . . . . . . . . 12 1 ∈ ℂ
26 npcan 8156 . . . . . . . . . . . 12 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
2724, 25, 26sylancl 413 . . . . . . . . . . 11 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
2827oveq2d 5885 . . . . . . . . . 10 (𝜑 → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁))
2928adantr 276 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁))
3021, 29eleqtrd 2256 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛 + 1) ∈ (𝑀...𝑁))
3117, 19, 30rspcdva 2846 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
3211eleq1d 2246 . . . . . . . 8 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑛) ∈ ℝ))
33 fzssp1 10053 . . . . . . . . . 10 (𝑀...(𝑁 − 1)) ⊆ (𝑀...((𝑁 − 1) + 1))
3433, 28sseqtrid 3205 . . . . . . . . 9 (𝜑 → (𝑀...(𝑁 − 1)) ⊆ (𝑀...𝑁))
3534sselda 3155 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑛 ∈ (𝑀...𝑁))
3632, 19, 35rspcdva 2846 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑛) ∈ ℝ)
3731, 36lenegd 8471 . . . . . 6 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛) ↔ -(𝐹𝑛) ≤ -(𝐹‘(𝑛 + 1))))
3815, 37mpbid 147 . . . . 5 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → -(𝐹𝑛) ≤ -(𝐹‘(𝑛 + 1)))
3936renegcld 8327 . . . . . 6 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → -(𝐹𝑛) ∈ ℝ)
4011negeqd 8142 . . . . . . 7 (𝑘 = 𝑛 → -(𝐹𝑘) = -(𝐹𝑛))
4140, 4fvmptg 5588 . . . . . 6 ((𝑛 ∈ (𝑀...𝑁) ∧ -(𝐹𝑛) ∈ ℝ) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑛) = -(𝐹𝑛))
4235, 39, 41syl2anc 411 . . . . 5 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑛) = -(𝐹𝑛))
4331renegcld 8327 . . . . . 6 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → -(𝐹‘(𝑛 + 1)) ∈ ℝ)
4416negeqd 8142 . . . . . . 7 (𝑘 = (𝑛 + 1) → -(𝐹𝑘) = -(𝐹‘(𝑛 + 1)))
4544, 4fvmptg 5588 . . . . . 6 (((𝑛 + 1) ∈ (𝑀...𝑁) ∧ -(𝐹‘(𝑛 + 1)) ∈ ℝ) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘(𝑛 + 1)) = -(𝐹‘(𝑛 + 1)))
4630, 43, 45syl2anc 411 . . . . 5 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘(𝑛 + 1)) = -(𝐹‘(𝑛 + 1)))
4738, 42, 463brtr4d 4032 . . . 4 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑛) ≤ ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘(𝑛 + 1)))
481, 6, 47monoord 10462 . . 3 (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑀) ≤ ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑁))
49 eluzfz1 10017 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
501, 49syl 14 . . . 4 (𝜑𝑀 ∈ (𝑀...𝑁))
51 fveq2 5511 . . . . . . 7 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
5251eleq1d 2246 . . . . . 6 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑀) ∈ ℝ))
5352, 18, 50rspcdva 2846 . . . . 5 (𝜑 → (𝐹𝑀) ∈ ℝ)
5453renegcld 8327 . . . 4 (𝜑 → -(𝐹𝑀) ∈ ℝ)
5551negeqd 8142 . . . . 5 (𝑘 = 𝑀 → -(𝐹𝑘) = -(𝐹𝑀))
5655, 4fvmptg 5588 . . . 4 ((𝑀 ∈ (𝑀...𝑁) ∧ -(𝐹𝑀) ∈ ℝ) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑀) = -(𝐹𝑀))
5750, 54, 56syl2anc 411 . . 3 (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑀) = -(𝐹𝑀))
58 eluzfz2 10018 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
591, 58syl 14 . . . 4 (𝜑𝑁 ∈ (𝑀...𝑁))
60 fveq2 5511 . . . . . . 7 (𝑘 = 𝑁 → (𝐹𝑘) = (𝐹𝑁))
6160eleq1d 2246 . . . . . 6 (𝑘 = 𝑁 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑁) ∈ ℝ))
6261, 18, 59rspcdva 2846 . . . . 5 (𝜑 → (𝐹𝑁) ∈ ℝ)
6362renegcld 8327 . . . 4 (𝜑 → -(𝐹𝑁) ∈ ℝ)
6460negeqd 8142 . . . . 5 (𝑘 = 𝑁 → -(𝐹𝑘) = -(𝐹𝑁))
6564, 4fvmptg 5588 . . . 4 ((𝑁 ∈ (𝑀...𝑁) ∧ -(𝐹𝑁) ∈ ℝ) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑁) = -(𝐹𝑁))
6659, 63, 65syl2anc 411 . . 3 (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑁) = -(𝐹𝑁))
6748, 57, 663brtr3d 4031 . 2 (𝜑 → -(𝐹𝑀) ≤ -(𝐹𝑁))
6862, 53lenegd 8471 . 2 (𝜑 → ((𝐹𝑁) ≤ (𝐹𝑀) ↔ -(𝐹𝑀) ≤ -(𝐹𝑁)))
6967, 68mpbird 167 1 (𝜑 → (𝐹𝑁) ≤ (𝐹𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  wral 2455   class class class wbr 4000  cmpt 4061  cfv 5212  (class class class)co 5869  cc 7800  cr 7801  1c1 7803   + caddc 7805  cle 7983  cmin 8118  -cneg 8119  cz 9242  cuz 9517  ...cfz 9995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-fz 9996
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator