ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  monoord2 GIF version

Theorem monoord2 9870
Description: Ordering relation for a monotonic sequence, decreasing case. (Contributed by Mario Carneiro, 18-Jul-2014.)
Hypotheses
Ref Expression
monoord2.1 (𝜑𝑁 ∈ (ℤ𝑀))
monoord2.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
monoord2.3 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
Assertion
Ref Expression
monoord2 (𝜑 → (𝐹𝑁) ≤ (𝐹𝑀))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem monoord2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 monoord2.1 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
2 monoord2.2 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
32renegcld 7837 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → -(𝐹𝑘) ∈ ℝ)
4 eqid 2088 . . . . . 6 (𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘)) = (𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))
53, 4fmptd 5436 . . . . 5 (𝜑 → (𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘)):(𝑀...𝑁)⟶ℝ)
65ffvelrnda 5418 . . . 4 ((𝜑𝑛 ∈ (𝑀...𝑁)) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑛) ∈ ℝ)
7 monoord2.3 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
87ralrimiva 2446 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
9 oveq1 5641 . . . . . . . . . . 11 (𝑘 = 𝑛 → (𝑘 + 1) = (𝑛 + 1))
109fveq2d 5293 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1)))
11 fveq2 5289 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
1210, 11breq12d 3850 . . . . . . . . 9 (𝑘 = 𝑛 → ((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ↔ (𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛)))
1312cbvralv 2590 . . . . . . . 8 (∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ↔ ∀𝑛 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
148, 13sylib 120 . . . . . . 7 (𝜑 → ∀𝑛 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
1514r19.21bi 2461 . . . . . 6 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
16 fveq2 5289 . . . . . . . . 9 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
1716eleq1d 2156 . . . . . . . 8 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(𝑛 + 1)) ∈ ℝ))
182ralrimiva 2446 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ)
1918adantr 270 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ)
20 fzp1elp1 9456 . . . . . . . . . 10 (𝑛 ∈ (𝑀...(𝑁 − 1)) → (𝑛 + 1) ∈ (𝑀...((𝑁 − 1) + 1)))
2120adantl 271 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛 + 1) ∈ (𝑀...((𝑁 − 1) + 1)))
22 eluzelz 8997 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
231, 22syl 14 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℤ)
2423zcnd 8839 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
25 ax-1cn 7417 . . . . . . . . . . . 12 1 ∈ ℂ
26 npcan 7670 . . . . . . . . . . . 12 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
2724, 25, 26sylancl 404 . . . . . . . . . . 11 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
2827oveq2d 5650 . . . . . . . . . 10 (𝜑 → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁))
2928adantr 270 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁))
3021, 29eleqtrd 2166 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛 + 1) ∈ (𝑀...𝑁))
3117, 19, 30rspcdva 2727 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
3211eleq1d 2156 . . . . . . . 8 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑛) ∈ ℝ))
33 fzssp1 9449 . . . . . . . . . 10 (𝑀...(𝑁 − 1)) ⊆ (𝑀...((𝑁 − 1) + 1))
3433, 28syl5sseq 3072 . . . . . . . . 9 (𝜑 → (𝑀...(𝑁 − 1)) ⊆ (𝑀...𝑁))
3534sselda 3023 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑛 ∈ (𝑀...𝑁))
3632, 19, 35rspcdva 2727 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑛) ∈ ℝ)
3731, 36lenegd 7977 . . . . . 6 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛) ↔ -(𝐹𝑛) ≤ -(𝐹‘(𝑛 + 1))))
3815, 37mpbid 145 . . . . 5 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → -(𝐹𝑛) ≤ -(𝐹‘(𝑛 + 1)))
3936renegcld 7837 . . . . . 6 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → -(𝐹𝑛) ∈ ℝ)
4011negeqd 7656 . . . . . . 7 (𝑘 = 𝑛 → -(𝐹𝑘) = -(𝐹𝑛))
4140, 4fvmptg 5364 . . . . . 6 ((𝑛 ∈ (𝑀...𝑁) ∧ -(𝐹𝑛) ∈ ℝ) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑛) = -(𝐹𝑛))
4235, 39, 41syl2anc 403 . . . . 5 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑛) = -(𝐹𝑛))
4331renegcld 7837 . . . . . 6 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → -(𝐹‘(𝑛 + 1)) ∈ ℝ)
4416negeqd 7656 . . . . . . 7 (𝑘 = (𝑛 + 1) → -(𝐹𝑘) = -(𝐹‘(𝑛 + 1)))
4544, 4fvmptg 5364 . . . . . 6 (((𝑛 + 1) ∈ (𝑀...𝑁) ∧ -(𝐹‘(𝑛 + 1)) ∈ ℝ) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘(𝑛 + 1)) = -(𝐹‘(𝑛 + 1)))
4630, 43, 45syl2anc 403 . . . . 5 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘(𝑛 + 1)) = -(𝐹‘(𝑛 + 1)))
4738, 42, 463brtr4d 3867 . . . 4 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑛) ≤ ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘(𝑛 + 1)))
481, 6, 47monoord 9869 . . 3 (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑀) ≤ ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑁))
49 eluzfz1 9414 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
501, 49syl 14 . . . 4 (𝜑𝑀 ∈ (𝑀...𝑁))
51 fveq2 5289 . . . . . . 7 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
5251eleq1d 2156 . . . . . 6 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑀) ∈ ℝ))
5352, 18, 50rspcdva 2727 . . . . 5 (𝜑 → (𝐹𝑀) ∈ ℝ)
5453renegcld 7837 . . . 4 (𝜑 → -(𝐹𝑀) ∈ ℝ)
5551negeqd 7656 . . . . 5 (𝑘 = 𝑀 → -(𝐹𝑘) = -(𝐹𝑀))
5655, 4fvmptg 5364 . . . 4 ((𝑀 ∈ (𝑀...𝑁) ∧ -(𝐹𝑀) ∈ ℝ) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑀) = -(𝐹𝑀))
5750, 54, 56syl2anc 403 . . 3 (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑀) = -(𝐹𝑀))
58 eluzfz2 9415 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
591, 58syl 14 . . . 4 (𝜑𝑁 ∈ (𝑀...𝑁))
60 fveq2 5289 . . . . . . 7 (𝑘 = 𝑁 → (𝐹𝑘) = (𝐹𝑁))
6160eleq1d 2156 . . . . . 6 (𝑘 = 𝑁 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑁) ∈ ℝ))
6261, 18, 59rspcdva 2727 . . . . 5 (𝜑 → (𝐹𝑁) ∈ ℝ)
6362renegcld 7837 . . . 4 (𝜑 → -(𝐹𝑁) ∈ ℝ)
6460negeqd 7656 . . . . 5 (𝑘 = 𝑁 → -(𝐹𝑘) = -(𝐹𝑁))
6564, 4fvmptg 5364 . . . 4 ((𝑁 ∈ (𝑀...𝑁) ∧ -(𝐹𝑁) ∈ ℝ) → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑁) = -(𝐹𝑁))
6659, 63, 65syl2anc 403 . . 3 (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -(𝐹𝑘))‘𝑁) = -(𝐹𝑁))
6748, 57, 663brtr3d 3866 . 2 (𝜑 → -(𝐹𝑀) ≤ -(𝐹𝑁))
6862, 53lenegd 7977 . 2 (𝜑 → ((𝐹𝑁) ≤ (𝐹𝑀) ↔ -(𝐹𝑀) ≤ -(𝐹𝑁)))
6967, 68mpbird 165 1 (𝜑 → (𝐹𝑁) ≤ (𝐹𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1289  wcel 1438  wral 2359   class class class wbr 3837  cmpt 3891  cfv 5002  (class class class)co 5634  cc 7327  cr 7328  1c1 7330   + caddc 7332  cle 7502  cmin 7632  -cneg 7633  cz 8720  cuz 8988  ...cfz 9393
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-addcom 7424  ax-addass 7426  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-0id 7432  ax-rnegex 7433  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-ltadd 7440
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-br 3838  df-opab 3892  df-mpt 3893  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-inn 8395  df-n0 8644  df-z 8721  df-uz 8989  df-fz 9394
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator