ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cndis GIF version

Theorem cndis 14828
Description: Every function is continuous when the domain is discrete. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cndis ((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) → (𝒫 𝐴 Cn 𝐽) = (𝑋𝑚 𝐴))

Proof of Theorem cndis
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 5064 . . . . . . . 8 (𝑓𝑥) ⊆ dom 𝑓
2 fdm 5451 . . . . . . . . 9 (𝑓:𝐴𝑋 → dom 𝑓 = 𝐴)
32adantl 277 . . . . . . . 8 (((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴𝑋) → dom 𝑓 = 𝐴)
41, 3sseqtrid 3251 . . . . . . 7 (((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴𝑋) → (𝑓𝑥) ⊆ 𝐴)
5 elpw2g 4216 . . . . . . . 8 (𝐴𝑉 → ((𝑓𝑥) ∈ 𝒫 𝐴 ↔ (𝑓𝑥) ⊆ 𝐴))
65ad2antrr 488 . . . . . . 7 (((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴𝑋) → ((𝑓𝑥) ∈ 𝒫 𝐴 ↔ (𝑓𝑥) ⊆ 𝐴))
74, 6mpbird 167 . . . . . 6 (((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴𝑋) → (𝑓𝑥) ∈ 𝒫 𝐴)
87ralrimivw 2582 . . . . 5 (((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴𝑋) → ∀𝑥𝐽 (𝑓𝑥) ∈ 𝒫 𝐴)
98ex 115 . . . 4 ((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) → (𝑓:𝐴𝑋 → ∀𝑥𝐽 (𝑓𝑥) ∈ 𝒫 𝐴))
109pm4.71d 393 . . 3 ((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) → (𝑓:𝐴𝑋 ↔ (𝑓:𝐴𝑋 ∧ ∀𝑥𝐽 (𝑓𝑥) ∈ 𝒫 𝐴)))
11 toponmax 14612 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
12 id 19 . . . 4 (𝐴𝑉𝐴𝑉)
13 elmapg 6771 . . . 4 ((𝑋𝐽𝐴𝑉) → (𝑓 ∈ (𝑋𝑚 𝐴) ↔ 𝑓:𝐴𝑋))
1411, 12, 13syl2anr 290 . . 3 ((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝑋𝑚 𝐴) ↔ 𝑓:𝐴𝑋))
15 distopon 14674 . . . 4 (𝐴𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴))
16 iscn 14784 . . . 4 ((𝒫 𝐴 ∈ (TopOn‘𝐴) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝒫 𝐴 Cn 𝐽) ↔ (𝑓:𝐴𝑋 ∧ ∀𝑥𝐽 (𝑓𝑥) ∈ 𝒫 𝐴)))
1715, 16sylan 283 . . 3 ((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝒫 𝐴 Cn 𝐽) ↔ (𝑓:𝐴𝑋 ∧ ∀𝑥𝐽 (𝑓𝑥) ∈ 𝒫 𝐴)))
1810, 14, 173bitr4rd 221 . 2 ((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝒫 𝐴 Cn 𝐽) ↔ 𝑓 ∈ (𝑋𝑚 𝐴)))
1918eqrdv 2205 1 ((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) → (𝒫 𝐴 Cn 𝐽) = (𝑋𝑚 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2178  wral 2486  wss 3174  𝒫 cpw 3626  ccnv 4692  dom cdm 4693  cima 4696  wf 5286  cfv 5290  (class class class)co 5967  𝑚 cmap 6758  TopOnctopon 14597   Cn ccn 14772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-map 6760  df-top 14585  df-topon 14598  df-cn 14775
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator