Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cndis | GIF version |
Description: Every function is continuous when the domain is discrete. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
cndis | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝒫 𝐴 Cn 𝐽) = (𝑋 ↑𝑚 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvimass 4967 | . . . . . . . 8 ⊢ (◡𝑓 “ 𝑥) ⊆ dom 𝑓 | |
2 | fdm 5343 | . . . . . . . . 9 ⊢ (𝑓:𝐴⟶𝑋 → dom 𝑓 = 𝐴) | |
3 | 2 | adantl 275 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴⟶𝑋) → dom 𝑓 = 𝐴) |
4 | 1, 3 | sseqtrid 3192 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴⟶𝑋) → (◡𝑓 “ 𝑥) ⊆ 𝐴) |
5 | elpw2g 4135 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑉 → ((◡𝑓 “ 𝑥) ∈ 𝒫 𝐴 ↔ (◡𝑓 “ 𝑥) ⊆ 𝐴)) | |
6 | 5 | ad2antrr 480 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴⟶𝑋) → ((◡𝑓 “ 𝑥) ∈ 𝒫 𝐴 ↔ (◡𝑓 “ 𝑥) ⊆ 𝐴)) |
7 | 4, 6 | mpbird 166 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴⟶𝑋) → (◡𝑓 “ 𝑥) ∈ 𝒫 𝐴) |
8 | 7 | ralrimivw 2540 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴⟶𝑋) → ∀𝑥 ∈ 𝐽 (◡𝑓 “ 𝑥) ∈ 𝒫 𝐴) |
9 | 8 | ex 114 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑓:𝐴⟶𝑋 → ∀𝑥 ∈ 𝐽 (◡𝑓 “ 𝑥) ∈ 𝒫 𝐴)) |
10 | 9 | pm4.71d 391 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑓:𝐴⟶𝑋 ↔ (𝑓:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐽 (◡𝑓 “ 𝑥) ∈ 𝒫 𝐴))) |
11 | toponmax 12673 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
12 | id 19 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉) | |
13 | elmapg 6627 | . . . 4 ⊢ ((𝑋 ∈ 𝐽 ∧ 𝐴 ∈ 𝑉) → (𝑓 ∈ (𝑋 ↑𝑚 𝐴) ↔ 𝑓:𝐴⟶𝑋)) | |
14 | 11, 12, 13 | syl2anr 288 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝑋 ↑𝑚 𝐴) ↔ 𝑓:𝐴⟶𝑋)) |
15 | distopon 12737 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴)) | |
16 | iscn 12847 | . . . 4 ⊢ ((𝒫 𝐴 ∈ (TopOn‘𝐴) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝒫 𝐴 Cn 𝐽) ↔ (𝑓:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐽 (◡𝑓 “ 𝑥) ∈ 𝒫 𝐴))) | |
17 | 15, 16 | sylan 281 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝒫 𝐴 Cn 𝐽) ↔ (𝑓:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐽 (◡𝑓 “ 𝑥) ∈ 𝒫 𝐴))) |
18 | 10, 14, 17 | 3bitr4rd 220 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝒫 𝐴 Cn 𝐽) ↔ 𝑓 ∈ (𝑋 ↑𝑚 𝐴))) |
19 | 18 | eqrdv 2163 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝒫 𝐴 Cn 𝐽) = (𝑋 ↑𝑚 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∀wral 2444 ⊆ wss 3116 𝒫 cpw 3559 ◡ccnv 4603 dom cdm 4604 “ cima 4607 ⟶wf 5184 ‘cfv 5188 (class class class)co 5842 ↑𝑚 cmap 6614 TopOnctopon 12658 Cn ccn 12835 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-map 6616 df-top 12646 df-topon 12659 df-cn 12838 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |