ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cndis GIF version

Theorem cndis 14909
Description: Every function is continuous when the domain is discrete. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cndis ((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) → (𝒫 𝐴 Cn 𝐽) = (𝑋𝑚 𝐴))

Proof of Theorem cndis
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 5090 . . . . . . . 8 (𝑓𝑥) ⊆ dom 𝑓
2 fdm 5478 . . . . . . . . 9 (𝑓:𝐴𝑋 → dom 𝑓 = 𝐴)
32adantl 277 . . . . . . . 8 (((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴𝑋) → dom 𝑓 = 𝐴)
41, 3sseqtrid 3274 . . . . . . 7 (((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴𝑋) → (𝑓𝑥) ⊆ 𝐴)
5 elpw2g 4239 . . . . . . . 8 (𝐴𝑉 → ((𝑓𝑥) ∈ 𝒫 𝐴 ↔ (𝑓𝑥) ⊆ 𝐴))
65ad2antrr 488 . . . . . . 7 (((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴𝑋) → ((𝑓𝑥) ∈ 𝒫 𝐴 ↔ (𝑓𝑥) ⊆ 𝐴))
74, 6mpbird 167 . . . . . 6 (((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴𝑋) → (𝑓𝑥) ∈ 𝒫 𝐴)
87ralrimivw 2604 . . . . 5 (((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴𝑋) → ∀𝑥𝐽 (𝑓𝑥) ∈ 𝒫 𝐴)
98ex 115 . . . 4 ((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) → (𝑓:𝐴𝑋 → ∀𝑥𝐽 (𝑓𝑥) ∈ 𝒫 𝐴))
109pm4.71d 393 . . 3 ((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) → (𝑓:𝐴𝑋 ↔ (𝑓:𝐴𝑋 ∧ ∀𝑥𝐽 (𝑓𝑥) ∈ 𝒫 𝐴)))
11 toponmax 14693 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
12 id 19 . . . 4 (𝐴𝑉𝐴𝑉)
13 elmapg 6806 . . . 4 ((𝑋𝐽𝐴𝑉) → (𝑓 ∈ (𝑋𝑚 𝐴) ↔ 𝑓:𝐴𝑋))
1411, 12, 13syl2anr 290 . . 3 ((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝑋𝑚 𝐴) ↔ 𝑓:𝐴𝑋))
15 distopon 14755 . . . 4 (𝐴𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴))
16 iscn 14865 . . . 4 ((𝒫 𝐴 ∈ (TopOn‘𝐴) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝒫 𝐴 Cn 𝐽) ↔ (𝑓:𝐴𝑋 ∧ ∀𝑥𝐽 (𝑓𝑥) ∈ 𝒫 𝐴)))
1715, 16sylan 283 . . 3 ((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝒫 𝐴 Cn 𝐽) ↔ (𝑓:𝐴𝑋 ∧ ∀𝑥𝐽 (𝑓𝑥) ∈ 𝒫 𝐴)))
1810, 14, 173bitr4rd 221 . 2 ((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝒫 𝐴 Cn 𝐽) ↔ 𝑓 ∈ (𝑋𝑚 𝐴)))
1918eqrdv 2227 1 ((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) → (𝒫 𝐴 Cn 𝐽) = (𝑋𝑚 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wral 2508  wss 3197  𝒫 cpw 3649  ccnv 4717  dom cdm 4718  cima 4721  wf 5313  cfv 5317  (class class class)co 6000  𝑚 cmap 6793  TopOnctopon 14678   Cn ccn 14853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-map 6795  df-top 14666  df-topon 14679  df-cn 14856
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator