Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cndis | GIF version |
Description: Every function is continuous when the domain is discrete. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
cndis | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝒫 𝐴 Cn 𝐽) = (𝑋 ↑𝑚 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvimass 4946 | . . . . . . . 8 ⊢ (◡𝑓 “ 𝑥) ⊆ dom 𝑓 | |
2 | fdm 5322 | . . . . . . . . 9 ⊢ (𝑓:𝐴⟶𝑋 → dom 𝑓 = 𝐴) | |
3 | 2 | adantl 275 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴⟶𝑋) → dom 𝑓 = 𝐴) |
4 | 1, 3 | sseqtrid 3178 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴⟶𝑋) → (◡𝑓 “ 𝑥) ⊆ 𝐴) |
5 | elpw2g 4117 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑉 → ((◡𝑓 “ 𝑥) ∈ 𝒫 𝐴 ↔ (◡𝑓 “ 𝑥) ⊆ 𝐴)) | |
6 | 5 | ad2antrr 480 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴⟶𝑋) → ((◡𝑓 “ 𝑥) ∈ 𝒫 𝐴 ↔ (◡𝑓 “ 𝑥) ⊆ 𝐴)) |
7 | 4, 6 | mpbird 166 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴⟶𝑋) → (◡𝑓 “ 𝑥) ∈ 𝒫 𝐴) |
8 | 7 | ralrimivw 2531 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴⟶𝑋) → ∀𝑥 ∈ 𝐽 (◡𝑓 “ 𝑥) ∈ 𝒫 𝐴) |
9 | 8 | ex 114 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑓:𝐴⟶𝑋 → ∀𝑥 ∈ 𝐽 (◡𝑓 “ 𝑥) ∈ 𝒫 𝐴)) |
10 | 9 | pm4.71d 391 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑓:𝐴⟶𝑋 ↔ (𝑓:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐽 (◡𝑓 “ 𝑥) ∈ 𝒫 𝐴))) |
11 | toponmax 12383 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
12 | id 19 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉) | |
13 | elmapg 6599 | . . . 4 ⊢ ((𝑋 ∈ 𝐽 ∧ 𝐴 ∈ 𝑉) → (𝑓 ∈ (𝑋 ↑𝑚 𝐴) ↔ 𝑓:𝐴⟶𝑋)) | |
14 | 11, 12, 13 | syl2anr 288 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝑋 ↑𝑚 𝐴) ↔ 𝑓:𝐴⟶𝑋)) |
15 | distopon 12447 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴)) | |
16 | iscn 12557 | . . . 4 ⊢ ((𝒫 𝐴 ∈ (TopOn‘𝐴) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝒫 𝐴 Cn 𝐽) ↔ (𝑓:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐽 (◡𝑓 “ 𝑥) ∈ 𝒫 𝐴))) | |
17 | 15, 16 | sylan 281 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝒫 𝐴 Cn 𝐽) ↔ (𝑓:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐽 (◡𝑓 “ 𝑥) ∈ 𝒫 𝐴))) |
18 | 10, 14, 17 | 3bitr4rd 220 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝒫 𝐴 Cn 𝐽) ↔ 𝑓 ∈ (𝑋 ↑𝑚 𝐴))) |
19 | 18 | eqrdv 2155 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝒫 𝐴 Cn 𝐽) = (𝑋 ↑𝑚 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1335 ∈ wcel 2128 ∀wral 2435 ⊆ wss 3102 𝒫 cpw 3543 ◡ccnv 4582 dom cdm 4583 “ cima 4586 ⟶wf 5163 ‘cfv 5167 (class class class)co 5818 ↑𝑚 cmap 6586 TopOnctopon 12368 Cn ccn 12545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-fv 5175 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1st 6082 df-2nd 6083 df-map 6588 df-top 12356 df-topon 12369 df-cn 12548 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |