ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iscnp3 GIF version

Theorem iscnp3 12411
Description: The predicate "the class 𝐹 is a continuous function from topology 𝐽 to topology 𝐾 at point 𝑃". (Contributed by NM, 15-May-2007.)
Assertion
Ref Expression
iscnp3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥𝑥 ⊆ (𝐹𝑦))))))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝑃,𝑦

Proof of Theorem iscnp3
StepHypRef Expression
1 iscnp 12407 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
2 ffun 5283 . . . . . . . . . 10 (𝐹:𝑋𝑌 → Fun 𝐹)
32ad2antlr 481 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐽) → Fun 𝐹)
4 toponss 12232 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝐽) → 𝑥𝑋)
54adantlr 469 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐽) → 𝑥𝑋)
6 fdm 5286 . . . . . . . . . . 11 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
76ad2antlr 481 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐽) → dom 𝐹 = 𝑋)
85, 7sseqtrrd 3141 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐽) → 𝑥 ⊆ dom 𝐹)
9 funimass3 5544 . . . . . . . . 9 ((Fun 𝐹𝑥 ⊆ dom 𝐹) → ((𝐹𝑥) ⊆ 𝑦𝑥 ⊆ (𝐹𝑦)))
103, 8, 9syl2anc 409 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐽) → ((𝐹𝑥) ⊆ 𝑦𝑥 ⊆ (𝐹𝑦)))
1110anbi2d 460 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐽) → ((𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) ↔ (𝑃𝑥𝑥 ⊆ (𝐹𝑦))))
1211rexbidva 2435 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋𝑌) → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) ↔ ∃𝑥𝐽 (𝑃𝑥𝑥 ⊆ (𝐹𝑦))))
1312imbi2d 229 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋𝑌) → (((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ↔ ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥𝑥 ⊆ (𝐹𝑦)))))
1413ralbidv 2438 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ↔ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥𝑥 ⊆ (𝐹𝑦)))))
1514pm5.32da 448 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ((𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥𝑥 ⊆ (𝐹𝑦))))))
16153ad2ant1 1003 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → ((𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥𝑥 ⊆ (𝐹𝑦))))))
171, 16bitrd 187 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥𝑥 ⊆ (𝐹𝑦))))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1332  wcel 1481  wral 2417  wrex 2418  wss 3076  ccnv 4546  dom cdm 4547  cima 4550  Fun wfun 5125  wf 5127  cfv 5131  (class class class)co 5782  TopOnctopon 12216   CnP ccnp 12394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-map 6552  df-top 12204  df-topon 12217  df-cnp 12397
This theorem is referenced by:  cncnpi  12436  cnpdis  12450
  Copyright terms: Public domain W3C validator