| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zsupcl | GIF version | ||
| Description: Closure of supremum for decidable integer properties. The property which defines the set we are taking the supremum of must (a) be true at 𝑀 (which corresponds to the nonempty condition of classical supremum theorems), (b) decidable at each value after 𝑀, and (c) be false after 𝑗 (which corresponds to the upper bound condition found in classical supremum theorems). (Contributed by Jim Kingdon, 7-Dec-2021.) |
| Ref | Expression |
|---|---|
| zsupcl.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| zsupcl.sbm | ⊢ (𝑛 = 𝑀 → (𝜓 ↔ 𝜒)) |
| zsupcl.mtru | ⊢ (𝜑 → 𝜒) |
| zsupcl.dc | ⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → DECID 𝜓) |
| zsupcl.bnd | ⊢ (𝜑 → ∃𝑗 ∈ (ℤ≥‘𝑀)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ 𝜓) |
| Ref | Expression |
|---|---|
| zsupcl | ⊢ (𝜑 → sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ (ℤ≥‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zsupcl.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | 1 | zred 9494 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 3 | lttri3 8151 | . . . . 5 ⊢ ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑢 = 𝑣 ↔ (¬ 𝑢 < 𝑣 ∧ ¬ 𝑣 < 𝑢))) | |
| 4 | 3 | adantl 277 | . . . 4 ⊢ ((𝜑 ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → (𝑢 = 𝑣 ↔ (¬ 𝑢 < 𝑣 ∧ ¬ 𝑣 < 𝑢))) |
| 5 | zssre 9378 | . . . . 5 ⊢ ℤ ⊆ ℝ | |
| 6 | zsupcl.sbm | . . . . . 6 ⊢ (𝑛 = 𝑀 → (𝜓 ↔ 𝜒)) | |
| 7 | zsupcl.mtru | . . . . . 6 ⊢ (𝜑 → 𝜒) | |
| 8 | zsupcl.dc | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → DECID 𝜓) | |
| 9 | zsupcl.bnd | . . . . . 6 ⊢ (𝜑 → ∃𝑗 ∈ (ℤ≥‘𝑀)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ 𝜓) | |
| 10 | 1, 6, 7, 8, 9 | zsupcllemex 10371 | . . . . 5 ⊢ (𝜑 → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) |
| 11 | ssrexv 3257 | . . . . 5 ⊢ (ℤ ⊆ ℝ → (∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) | |
| 12 | 5, 10, 11 | mpsyl 65 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) |
| 13 | 4, 12 | supclti 7099 | . . 3 ⊢ (𝜑 → sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ ℝ) |
| 14 | 6 | elrab 2928 | . . . . 5 ⊢ (𝑀 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ↔ (𝑀 ∈ ℤ ∧ 𝜒)) |
| 15 | 1, 7, 14 | sylanbrc 417 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) |
| 16 | 4, 12 | supubti 7100 | . . . 4 ⊢ (𝜑 → (𝑀 ∈ {𝑛 ∈ ℤ ∣ 𝜓} → ¬ sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) < 𝑀)) |
| 17 | 15, 16 | mpd 13 | . . 3 ⊢ (𝜑 → ¬ sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) < 𝑀) |
| 18 | 2, 13, 17 | nltled 8192 | . 2 ⊢ (𝜑 → 𝑀 ≤ sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < )) |
| 19 | 5 | a1i 9 | . . . 4 ⊢ (𝜑 → ℤ ⊆ ℝ) |
| 20 | 4, 10, 19 | supelti 7103 | . . 3 ⊢ (𝜑 → sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ ℤ) |
| 21 | eluz 9660 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ ℤ) → (sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ))) | |
| 22 | 1, 20, 21 | syl2anc 411 | . 2 ⊢ (𝜑 → (sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ))) |
| 23 | 18, 22 | mpbird 167 | 1 ⊢ (𝜑 → sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ (ℤ≥‘𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 835 = wceq 1372 ∈ wcel 2175 ∀wral 2483 ∃wrex 2484 {crab 2487 ⊆ wss 3165 class class class wbr 4043 ‘cfv 5270 supcsup 7083 ℝcr 7923 < clt 8106 ≤ cle 8107 ℤcz 9371 ℤ≥cuz 9647 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-sup 7085 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-n0 9295 df-z 9372 df-uz 9648 df-fz 10130 df-fzo 10264 |
| This theorem is referenced by: suprzubdc 10377 gcdsupcl 12221 |
| Copyright terms: Public domain | W3C validator |