ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zsupcl GIF version

Theorem zsupcl 10396
Description: Closure of supremum for decidable integer properties. The property which defines the set we are taking the supremum of must (a) be true at 𝑀 (which corresponds to the nonempty condition of classical supremum theorems), (b) decidable at each value after 𝑀, and (c) be false after 𝑗 (which corresponds to the upper bound condition found in classical supremum theorems). (Contributed by Jim Kingdon, 7-Dec-2021.)
Hypotheses
Ref Expression
zsupcl.m (𝜑𝑀 ∈ ℤ)
zsupcl.sbm (𝑛 = 𝑀 → (𝜓𝜒))
zsupcl.mtru (𝜑𝜒)
zsupcl.dc ((𝜑𝑛 ∈ (ℤ𝑀)) → DECID 𝜓)
zsupcl.bnd (𝜑 → ∃𝑗 ∈ (ℤ𝑀)∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)
Assertion
Ref Expression
zsupcl (𝜑 → sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ (ℤ𝑀))
Distinct variable groups:   𝜑,𝑗,𝑛   𝜓,𝑗   𝜒,𝑗,𝑛   𝑗,𝑀,𝑛
Allowed substitution hint:   𝜓(𝑛)

Proof of Theorem zsupcl
Dummy variables 𝑥 𝑦 𝑧 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zsupcl.m . . . 4 (𝜑𝑀 ∈ ℤ)
21zred 9515 . . 3 (𝜑𝑀 ∈ ℝ)
3 lttri3 8172 . . . . 5 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑢 = 𝑣 ↔ (¬ 𝑢 < 𝑣 ∧ ¬ 𝑣 < 𝑢)))
43adantl 277 . . . 4 ((𝜑 ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → (𝑢 = 𝑣 ↔ (¬ 𝑢 < 𝑣 ∧ ¬ 𝑣 < 𝑢)))
5 zssre 9399 . . . . 5 ℤ ⊆ ℝ
6 zsupcl.sbm . . . . . 6 (𝑛 = 𝑀 → (𝜓𝜒))
7 zsupcl.mtru . . . . . 6 (𝜑𝜒)
8 zsupcl.dc . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → DECID 𝜓)
9 zsupcl.bnd . . . . . 6 (𝜑 → ∃𝑗 ∈ (ℤ𝑀)∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)
101, 6, 7, 8, 9zsupcllemex 10395 . . . . 5 (𝜑 → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
11 ssrexv 3262 . . . . 5 (ℤ ⊆ ℝ → (∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
125, 10, 11mpsyl 65 . . . 4 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
134, 12supclti 7115 . . 3 (𝜑 → sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ ℝ)
146elrab 2933 . . . . 5 (𝑀 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ↔ (𝑀 ∈ ℤ ∧ 𝜒))
151, 7, 14sylanbrc 417 . . . 4 (𝜑𝑀 ∈ {𝑛 ∈ ℤ ∣ 𝜓})
164, 12supubti 7116 . . . 4 (𝜑 → (𝑀 ∈ {𝑛 ∈ ℤ ∣ 𝜓} → ¬ sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) < 𝑀))
1715, 16mpd 13 . . 3 (𝜑 → ¬ sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) < 𝑀)
182, 13, 17nltled 8213 . 2 (𝜑𝑀 ≤ sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ))
195a1i 9 . . . 4 (𝜑 → ℤ ⊆ ℝ)
204, 10, 19supelti 7119 . . 3 (𝜑 → sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ ℤ)
21 eluz 9681 . . 3 ((𝑀 ∈ ℤ ∧ sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ ℤ) → (sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ (ℤ𝑀) ↔ 𝑀 ≤ sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < )))
221, 20, 21syl2anc 411 . 2 (𝜑 → (sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ (ℤ𝑀) ↔ 𝑀 ≤ sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < )))
2318, 22mpbird 167 1 (𝜑 → sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ (ℤ𝑀))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 836   = wceq 1373  wcel 2177  wral 2485  wrex 2486  {crab 2489  wss 3170   class class class wbr 4051  cfv 5280  supcsup 7099  cr 7944   < clt 8127  cle 8128  cz 9392  cuz 9668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-sup 7101  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-n0 9316  df-z 9393  df-uz 9669  df-fz 10151  df-fzo 10285
This theorem is referenced by:  suprzubdc  10401  gcdsupcl  12354
  Copyright terms: Public domain W3C validator