![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zsupcl | GIF version |
Description: Closure of supremum for decidable integer properties. The property which defines the set we are taking the supremum of must (a) be true at 𝑀 (which corresponds to the nonempty condition of classical supremum theorems), (b) decidable at each value after 𝑀, and (c) be false after 𝑗 (which corresponds to the upper bound condition found in classical supremum theorems). (Contributed by Jim Kingdon, 7-Dec-2021.) |
Ref | Expression |
---|---|
zsupcl.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
zsupcl.sbm | ⊢ (𝑛 = 𝑀 → (𝜓 ↔ 𝜒)) |
zsupcl.mtru | ⊢ (𝜑 → 𝜒) |
zsupcl.dc | ⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → DECID 𝜓) |
zsupcl.bnd | ⊢ (𝜑 → ∃𝑗 ∈ (ℤ≥‘𝑀)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ 𝜓) |
Ref | Expression |
---|---|
zsupcl | ⊢ (𝜑 → sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ (ℤ≥‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zsupcl.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | 1 | zred 9442 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
3 | lttri3 8101 | . . . . 5 ⊢ ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑢 = 𝑣 ↔ (¬ 𝑢 < 𝑣 ∧ ¬ 𝑣 < 𝑢))) | |
4 | 3 | adantl 277 | . . . 4 ⊢ ((𝜑 ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → (𝑢 = 𝑣 ↔ (¬ 𝑢 < 𝑣 ∧ ¬ 𝑣 < 𝑢))) |
5 | zssre 9327 | . . . . 5 ⊢ ℤ ⊆ ℝ | |
6 | zsupcl.sbm | . . . . . 6 ⊢ (𝑛 = 𝑀 → (𝜓 ↔ 𝜒)) | |
7 | zsupcl.mtru | . . . . . 6 ⊢ (𝜑 → 𝜒) | |
8 | zsupcl.dc | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → DECID 𝜓) | |
9 | zsupcl.bnd | . . . . . 6 ⊢ (𝜑 → ∃𝑗 ∈ (ℤ≥‘𝑀)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ 𝜓) | |
10 | 1, 6, 7, 8, 9 | zsupcllemex 12086 | . . . . 5 ⊢ (𝜑 → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) |
11 | ssrexv 3245 | . . . . 5 ⊢ (ℤ ⊆ ℝ → (∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) | |
12 | 5, 10, 11 | mpsyl 65 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) |
13 | 4, 12 | supclti 7059 | . . 3 ⊢ (𝜑 → sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ ℝ) |
14 | 6 | elrab 2917 | . . . . 5 ⊢ (𝑀 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ↔ (𝑀 ∈ ℤ ∧ 𝜒)) |
15 | 1, 7, 14 | sylanbrc 417 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) |
16 | 4, 12 | supubti 7060 | . . . 4 ⊢ (𝜑 → (𝑀 ∈ {𝑛 ∈ ℤ ∣ 𝜓} → ¬ sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) < 𝑀)) |
17 | 15, 16 | mpd 13 | . . 3 ⊢ (𝜑 → ¬ sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) < 𝑀) |
18 | 2, 13, 17 | nltled 8142 | . 2 ⊢ (𝜑 → 𝑀 ≤ sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < )) |
19 | 5 | a1i 9 | . . . 4 ⊢ (𝜑 → ℤ ⊆ ℝ) |
20 | 4, 10, 19 | supelti 7063 | . . 3 ⊢ (𝜑 → sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ ℤ) |
21 | eluz 9608 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ ℤ) → (sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ))) | |
22 | 1, 20, 21 | syl2anc 411 | . 2 ⊢ (𝜑 → (sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ))) |
23 | 18, 22 | mpbird 167 | 1 ⊢ (𝜑 → sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ (ℤ≥‘𝑀)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 835 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ∃wrex 2473 {crab 2476 ⊆ wss 3154 class class class wbr 4030 ‘cfv 5255 supcsup 7043 ℝcr 7873 < clt 8056 ≤ cle 8057 ℤcz 9320 ℤ≥cuz 9595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-sup 7045 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-n0 9244 df-z 9321 df-uz 9596 df-fz 10078 df-fzo 10212 |
This theorem is referenced by: suprzubdc 12092 gcdsupcl 12098 |
Copyright terms: Public domain | W3C validator |