ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zsupcl GIF version

Theorem zsupcl 11370
Description: Closure of supremum for decidable integer properties. The property which defines the set we are taking the supremum of must (a) be true at 𝑀 (which corresponds to the nonempty condition of classical supremum theorems), (b) decidable at each value after 𝑀, and (c) be false after 𝑗 (which corresponds to the upper bound condition found in classical supremum theorems). (Contributed by Jim Kingdon, 7-Dec-2021.)
Hypotheses
Ref Expression
zsupcl.m (𝜑𝑀 ∈ ℤ)
zsupcl.sbm (𝑛 = 𝑀 → (𝜓𝜒))
zsupcl.mtru (𝜑𝜒)
zsupcl.dc ((𝜑𝑛 ∈ (ℤ𝑀)) → DECID 𝜓)
zsupcl.bnd (𝜑 → ∃𝑗 ∈ (ℤ𝑀)∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)
Assertion
Ref Expression
zsupcl (𝜑 → sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ (ℤ𝑀))
Distinct variable groups:   𝜑,𝑗,𝑛   𝜓,𝑗   𝜒,𝑗,𝑛   𝑗,𝑀,𝑛
Allowed substitution hint:   𝜓(𝑛)

Proof of Theorem zsupcl
Dummy variables 𝑥 𝑦 𝑧 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zsupcl.m . . . 4 (𝜑𝑀 ∈ ℤ)
21zred 8967 . . 3 (𝜑𝑀 ∈ ℝ)
3 lttri3 7662 . . . . 5 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑢 = 𝑣 ↔ (¬ 𝑢 < 𝑣 ∧ ¬ 𝑣 < 𝑢)))
43adantl 272 . . . 4 ((𝜑 ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → (𝑢 = 𝑣 ↔ (¬ 𝑢 < 𝑣 ∧ ¬ 𝑣 < 𝑢)))
5 zssre 8855 . . . . 5 ℤ ⊆ ℝ
6 zsupcl.sbm . . . . . 6 (𝑛 = 𝑀 → (𝜓𝜒))
7 zsupcl.mtru . . . . . 6 (𝜑𝜒)
8 zsupcl.dc . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → DECID 𝜓)
9 zsupcl.bnd . . . . . 6 (𝜑 → ∃𝑗 ∈ (ℤ𝑀)∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)
101, 6, 7, 8, 9zsupcllemex 11369 . . . . 5 (𝜑 → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
11 ssrexv 3101 . . . . 5 (ℤ ⊆ ℝ → (∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
125, 10, 11mpsyl 65 . . . 4 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
134, 12supclti 6773 . . 3 (𝜑 → sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ ℝ)
146elrab 2785 . . . . 5 (𝑀 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ↔ (𝑀 ∈ ℤ ∧ 𝜒))
151, 7, 14sylanbrc 409 . . . 4 (𝜑𝑀 ∈ {𝑛 ∈ ℤ ∣ 𝜓})
164, 12supubti 6774 . . . 4 (𝜑 → (𝑀 ∈ {𝑛 ∈ ℤ ∣ 𝜓} → ¬ sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) < 𝑀))
1715, 16mpd 13 . . 3 (𝜑 → ¬ sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) < 𝑀)
182, 13, 17nltled 7701 . 2 (𝜑𝑀 ≤ sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ))
195a1i 9 . . . 4 (𝜑 → ℤ ⊆ ℝ)
204, 10, 19supelti 6777 . . 3 (𝜑 → sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ ℤ)
21 eluz 9131 . . 3 ((𝑀 ∈ ℤ ∧ sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ ℤ) → (sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ (ℤ𝑀) ↔ 𝑀 ≤ sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < )))
221, 20, 21syl2anc 404 . 2 (𝜑 → (sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ (ℤ𝑀) ↔ 𝑀 ≤ sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < )))
2318, 22mpbird 166 1 (𝜑 → sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ (ℤ𝑀))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  DECID wdc 783   = wceq 1296  wcel 1445  wral 2370  wrex 2371  {crab 2374  wss 3013   class class class wbr 3867  cfv 5049  supcsup 6757  cr 7446   < clt 7619  cle 7620  cz 8848  cuz 9118
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-addcom 7542  ax-addass 7544  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-0id 7550  ax-rnegex 7551  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rmo 2378  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-sup 6759  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-inn 8521  df-n0 8772  df-z 8849  df-uz 9119  df-fz 9574  df-fzo 9703
This theorem is referenced by:  gcdsupcl  11377
  Copyright terms: Public domain W3C validator