![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zsupcl | GIF version |
Description: Closure of supremum for decidable integer properties. The property which defines the set we are taking the supremum of must (a) be true at 𝑀 (which corresponds to the nonempty condition of classical supremum theorems), (b) decidable at each value after 𝑀, and (c) be false after 𝑗 (which corresponds to the upper bound condition found in classical supremum theorems). (Contributed by Jim Kingdon, 7-Dec-2021.) |
Ref | Expression |
---|---|
zsupcl.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
zsupcl.sbm | ⊢ (𝑛 = 𝑀 → (𝜓 ↔ 𝜒)) |
zsupcl.mtru | ⊢ (𝜑 → 𝜒) |
zsupcl.dc | ⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → DECID 𝜓) |
zsupcl.bnd | ⊢ (𝜑 → ∃𝑗 ∈ (ℤ≥‘𝑀)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ 𝜓) |
Ref | Expression |
---|---|
zsupcl | ⊢ (𝜑 → sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ (ℤ≥‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zsupcl.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | 1 | zred 9377 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
3 | lttri3 8039 | . . . . 5 ⊢ ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑢 = 𝑣 ↔ (¬ 𝑢 < 𝑣 ∧ ¬ 𝑣 < 𝑢))) | |
4 | 3 | adantl 277 | . . . 4 ⊢ ((𝜑 ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → (𝑢 = 𝑣 ↔ (¬ 𝑢 < 𝑣 ∧ ¬ 𝑣 < 𝑢))) |
5 | zssre 9262 | . . . . 5 ⊢ ℤ ⊆ ℝ | |
6 | zsupcl.sbm | . . . . . 6 ⊢ (𝑛 = 𝑀 → (𝜓 ↔ 𝜒)) | |
7 | zsupcl.mtru | . . . . . 6 ⊢ (𝜑 → 𝜒) | |
8 | zsupcl.dc | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → DECID 𝜓) | |
9 | zsupcl.bnd | . . . . . 6 ⊢ (𝜑 → ∃𝑗 ∈ (ℤ≥‘𝑀)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ 𝜓) | |
10 | 1, 6, 7, 8, 9 | zsupcllemex 11949 | . . . . 5 ⊢ (𝜑 → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) |
11 | ssrexv 3222 | . . . . 5 ⊢ (ℤ ⊆ ℝ → (∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) | |
12 | 5, 10, 11 | mpsyl 65 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) |
13 | 4, 12 | supclti 6999 | . . 3 ⊢ (𝜑 → sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ ℝ) |
14 | 6 | elrab 2895 | . . . . 5 ⊢ (𝑀 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ↔ (𝑀 ∈ ℤ ∧ 𝜒)) |
15 | 1, 7, 14 | sylanbrc 417 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) |
16 | 4, 12 | supubti 7000 | . . . 4 ⊢ (𝜑 → (𝑀 ∈ {𝑛 ∈ ℤ ∣ 𝜓} → ¬ sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) < 𝑀)) |
17 | 15, 16 | mpd 13 | . . 3 ⊢ (𝜑 → ¬ sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) < 𝑀) |
18 | 2, 13, 17 | nltled 8080 | . 2 ⊢ (𝜑 → 𝑀 ≤ sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < )) |
19 | 5 | a1i 9 | . . . 4 ⊢ (𝜑 → ℤ ⊆ ℝ) |
20 | 4, 10, 19 | supelti 7003 | . . 3 ⊢ (𝜑 → sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ ℤ) |
21 | eluz 9543 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ ℤ) → (sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ))) | |
22 | 1, 20, 21 | syl2anc 411 | . 2 ⊢ (𝜑 → (sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ))) |
23 | 18, 22 | mpbird 167 | 1 ⊢ (𝜑 → sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ (ℤ≥‘𝑀)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 834 = wceq 1353 ∈ wcel 2148 ∀wral 2455 ∃wrex 2456 {crab 2459 ⊆ wss 3131 class class class wbr 4005 ‘cfv 5218 supcsup 6983 ℝcr 7812 < clt 7994 ≤ cle 7995 ℤcz 9255 ℤ≥cuz 9530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-sup 6985 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-inn 8922 df-n0 9179 df-z 9256 df-uz 9531 df-fz 10011 df-fzo 10145 |
This theorem is referenced by: suprzubdc 11955 gcdsupcl 11961 |
Copyright terms: Public domain | W3C validator |