Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ndxarg | GIF version |
Description: Get the numeric argument from a defined structure component extractor such as df-base 12422. (Contributed by Mario Carneiro, 6-Oct-2013.) |
Ref | Expression |
---|---|
ndxarg.1 | ⊢ 𝐸 = Slot 𝑁 |
ndxarg.2 | ⊢ 𝑁 ∈ ℕ |
Ref | Expression |
---|---|
ndxarg | ⊢ (𝐸‘ndx) = 𝑁 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ndx 12419 | . . . 4 ⊢ ndx = ( I ↾ ℕ) | |
2 | nnex 8884 | . . . . 5 ⊢ ℕ ∈ V | |
3 | resiexg 4936 | . . . . 5 ⊢ (ℕ ∈ V → ( I ↾ ℕ) ∈ V) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ( I ↾ ℕ) ∈ V |
5 | 1, 4 | eqeltri 2243 | . . 3 ⊢ ndx ∈ V |
6 | ndxarg.1 | . . 3 ⊢ 𝐸 = Slot 𝑁 | |
7 | ndxarg.2 | . . 3 ⊢ 𝑁 ∈ ℕ | |
8 | 5, 6, 7 | strnfvn 12437 | . 2 ⊢ (𝐸‘ndx) = (ndx‘𝑁) |
9 | 1 | fveq1i 5497 | . 2 ⊢ (ndx‘𝑁) = (( I ↾ ℕ)‘𝑁) |
10 | fvresi 5689 | . . 3 ⊢ (𝑁 ∈ ℕ → (( I ↾ ℕ)‘𝑁) = 𝑁) | |
11 | 7, 10 | ax-mp 5 | . 2 ⊢ (( I ↾ ℕ)‘𝑁) = 𝑁 |
12 | 8, 9, 11 | 3eqtri 2195 | 1 ⊢ (𝐸‘ndx) = 𝑁 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∈ wcel 2141 Vcvv 2730 I cid 4273 ↾ cres 4613 ‘cfv 5198 ℕcn 8878 ndxcnx 12413 Slot cslot 12415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fv 5206 df-inn 8879 df-ndx 12419 df-slot 12420 |
This theorem is referenced by: ndxid 12440 ndxslid 12441 strndxid 12444 basendx 12470 basendxnn 12471 plusgndx 12511 2strstrg 12518 2strbasg 12519 2stropg 12520 2strstr1g 12521 2strop1g 12523 basendxnplusgndx 12524 mulrndx 12528 basendxnmulrndx 12532 starvndx 12537 scandx 12545 vscandx 12548 ipndx 12556 tsetndx 12566 plendx 12573 dsndx 12576 |
Copyright terms: Public domain | W3C validator |