Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ndxarg | GIF version |
Description: Get the numeric argument from a defined structure component extractor such as df-base 12435. (Contributed by Mario Carneiro, 6-Oct-2013.) |
Ref | Expression |
---|---|
ndxarg.1 | ⊢ 𝐸 = Slot 𝑁 |
ndxarg.2 | ⊢ 𝑁 ∈ ℕ |
Ref | Expression |
---|---|
ndxarg | ⊢ (𝐸‘ndx) = 𝑁 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ndx 12432 | . . . 4 ⊢ ndx = ( I ↾ ℕ) | |
2 | nnex 8898 | . . . . 5 ⊢ ℕ ∈ V | |
3 | resiexg 4945 | . . . . 5 ⊢ (ℕ ∈ V → ( I ↾ ℕ) ∈ V) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ( I ↾ ℕ) ∈ V |
5 | 1, 4 | eqeltri 2248 | . . 3 ⊢ ndx ∈ V |
6 | ndxarg.1 | . . 3 ⊢ 𝐸 = Slot 𝑁 | |
7 | ndxarg.2 | . . 3 ⊢ 𝑁 ∈ ℕ | |
8 | 5, 6, 7 | strnfvn 12450 | . 2 ⊢ (𝐸‘ndx) = (ndx‘𝑁) |
9 | 1 | fveq1i 5508 | . 2 ⊢ (ndx‘𝑁) = (( I ↾ ℕ)‘𝑁) |
10 | fvresi 5701 | . . 3 ⊢ (𝑁 ∈ ℕ → (( I ↾ ℕ)‘𝑁) = 𝑁) | |
11 | 7, 10 | ax-mp 5 | . 2 ⊢ (( I ↾ ℕ)‘𝑁) = 𝑁 |
12 | 8, 9, 11 | 3eqtri 2200 | 1 ⊢ (𝐸‘ndx) = 𝑁 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∈ wcel 2146 Vcvv 2735 I cid 4282 ↾ cres 4622 ‘cfv 5208 ℕcn 8892 ndxcnx 12426 Slot cslot 12428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fv 5216 df-inn 8893 df-ndx 12432 df-slot 12433 |
This theorem is referenced by: ndxid 12453 ndxslid 12454 strndxid 12457 basendx 12483 basendxnn 12484 plusgndx 12533 2strstrg 12540 2strbasg 12541 2stropg 12542 2strstr1g 12543 2strop1g 12545 basendxnplusgndx 12546 mulrndx 12550 basendxnmulrndx 12554 starvndx 12559 scandx 12567 vscandx 12573 ipndx 12581 tsetndx 12591 plendx 12605 dsndx 12608 |
Copyright terms: Public domain | W3C validator |