ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ndxarg GIF version

Theorem ndxarg 12452
Description: Get the numeric argument from a defined structure component extractor such as df-base 12435. (Contributed by Mario Carneiro, 6-Oct-2013.)
Hypotheses
Ref Expression
ndxarg.1 𝐸 = Slot 𝑁
ndxarg.2 𝑁 ∈ ℕ
Assertion
Ref Expression
ndxarg (𝐸‘ndx) = 𝑁

Proof of Theorem ndxarg
StepHypRef Expression
1 df-ndx 12432 . . . 4 ndx = ( I ↾ ℕ)
2 nnex 8898 . . . . 5 ℕ ∈ V
3 resiexg 4945 . . . . 5 (ℕ ∈ V → ( I ↾ ℕ) ∈ V)
42, 3ax-mp 5 . . . 4 ( I ↾ ℕ) ∈ V
51, 4eqeltri 2248 . . 3 ndx ∈ V
6 ndxarg.1 . . 3 𝐸 = Slot 𝑁
7 ndxarg.2 . . 3 𝑁 ∈ ℕ
85, 6, 7strnfvn 12450 . 2 (𝐸‘ndx) = (ndx‘𝑁)
91fveq1i 5508 . 2 (ndx‘𝑁) = (( I ↾ ℕ)‘𝑁)
10 fvresi 5701 . . 3 (𝑁 ∈ ℕ → (( I ↾ ℕ)‘𝑁) = 𝑁)
117, 10ax-mp 5 . 2 (( I ↾ ℕ)‘𝑁) = 𝑁
128, 9, 113eqtri 2200 1 (𝐸‘ndx) = 𝑁
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wcel 2146  Vcvv 2735   I cid 4282  cres 4622  cfv 5208  cn 8892  ndxcnx 12426  Slot cslot 12428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-cnex 7877  ax-resscn 7878  ax-1re 7880  ax-addrcl 7883
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-iota 5170  df-fun 5210  df-fv 5216  df-inn 8893  df-ndx 12432  df-slot 12433
This theorem is referenced by:  ndxid  12453  ndxslid  12454  strndxid  12457  basendx  12483  basendxnn  12484  plusgndx  12533  2strstrg  12540  2strbasg  12541  2stropg  12542  2strstr1g  12543  2strop1g  12545  basendxnplusgndx  12546  mulrndx  12550  basendxnmulrndx  12554  starvndx  12559  scandx  12567  vscandx  12573  ipndx  12581  tsetndx  12591  plendx  12605  dsndx  12608
  Copyright terms: Public domain W3C validator