![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ndxarg | GIF version |
Description: Get the numeric argument from a defined structure component extractor such as df-base 12624. (Contributed by Mario Carneiro, 6-Oct-2013.) |
Ref | Expression |
---|---|
ndxarg.1 | ⊢ 𝐸 = Slot 𝑁 |
ndxarg.2 | ⊢ 𝑁 ∈ ℕ |
Ref | Expression |
---|---|
ndxarg | ⊢ (𝐸‘ndx) = 𝑁 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ndx 12621 | . . . 4 ⊢ ndx = ( I ↾ ℕ) | |
2 | nnex 8988 | . . . . 5 ⊢ ℕ ∈ V | |
3 | resiexg 4987 | . . . . 5 ⊢ (ℕ ∈ V → ( I ↾ ℕ) ∈ V) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ( I ↾ ℕ) ∈ V |
5 | 1, 4 | eqeltri 2266 | . . 3 ⊢ ndx ∈ V |
6 | ndxarg.1 | . . 3 ⊢ 𝐸 = Slot 𝑁 | |
7 | ndxarg.2 | . . 3 ⊢ 𝑁 ∈ ℕ | |
8 | 5, 6, 7 | strnfvn 12639 | . 2 ⊢ (𝐸‘ndx) = (ndx‘𝑁) |
9 | 1 | fveq1i 5555 | . 2 ⊢ (ndx‘𝑁) = (( I ↾ ℕ)‘𝑁) |
10 | fvresi 5751 | . . 3 ⊢ (𝑁 ∈ ℕ → (( I ↾ ℕ)‘𝑁) = 𝑁) | |
11 | 7, 10 | ax-mp 5 | . 2 ⊢ (( I ↾ ℕ)‘𝑁) = 𝑁 |
12 | 8, 9, 11 | 3eqtri 2218 | 1 ⊢ (𝐸‘ndx) = 𝑁 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 Vcvv 2760 I cid 4319 ↾ cres 4661 ‘cfv 5254 ℕcn 8982 ndxcnx 12615 Slot cslot 12617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fun 5256 df-fv 5262 df-inn 8983 df-ndx 12621 df-slot 12622 |
This theorem is referenced by: ndxid 12642 ndxslid 12643 strndxid 12646 basendx 12673 basendxnn 12674 plusgndx 12727 2strstrg 12736 2strbasg 12737 2stropg 12738 2strstr1g 12739 2strop1g 12741 basendxnplusgndx 12742 mulrndx 12747 basendxnmulrndx 12751 starvndx 12756 scandx 12768 vscandx 12774 ipndx 12786 tsetndx 12803 plendx 12817 dsndx 12828 unifndx 12839 |
Copyright terms: Public domain | W3C validator |