![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ndxarg | GIF version |
Description: Get the numeric argument from a defined structure component extractor such as df-base 12468. (Contributed by Mario Carneiro, 6-Oct-2013.) |
Ref | Expression |
---|---|
ndxarg.1 | β’ πΈ = Slot π |
ndxarg.2 | β’ π β β |
Ref | Expression |
---|---|
ndxarg | β’ (πΈβndx) = π |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ndx 12465 | . . . 4 β’ ndx = ( I βΎ β) | |
2 | nnex 8925 | . . . . 5 β’ β β V | |
3 | resiexg 4953 | . . . . 5 β’ (β β V β ( I βΎ β) β V) | |
4 | 2, 3 | ax-mp 5 | . . . 4 β’ ( I βΎ β) β V |
5 | 1, 4 | eqeltri 2250 | . . 3 β’ ndx β V |
6 | ndxarg.1 | . . 3 β’ πΈ = Slot π | |
7 | ndxarg.2 | . . 3 β’ π β β | |
8 | 5, 6, 7 | strnfvn 12483 | . 2 β’ (πΈβndx) = (ndxβπ) |
9 | 1 | fveq1i 5517 | . 2 β’ (ndxβπ) = (( I βΎ β)βπ) |
10 | fvresi 5710 | . . 3 β’ (π β β β (( I βΎ β)βπ) = π) | |
11 | 7, 10 | ax-mp 5 | . 2 β’ (( I βΎ β)βπ) = π |
12 | 8, 9, 11 | 3eqtri 2202 | 1 β’ (πΈβndx) = π |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 β wcel 2148 Vcvv 2738 I cid 4289 βΎ cres 4629 βcfv 5217 βcn 8919 ndxcnx 12459 Slot cslot 12461 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-cnex 7902 ax-resscn 7903 ax-1re 7905 ax-addrcl 7908 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2740 df-sbc 2964 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-iota 5179 df-fun 5219 df-fv 5225 df-inn 8920 df-ndx 12465 df-slot 12466 |
This theorem is referenced by: ndxid 12486 ndxslid 12487 strndxid 12490 basendx 12517 basendxnn 12518 plusgndx 12568 2strstrg 12577 2strbasg 12578 2stropg 12579 2strstr1g 12580 2strop1g 12582 basendxnplusgndx 12583 mulrndx 12588 basendxnmulrndx 12592 starvndx 12597 scandx 12609 vscandx 12615 ipndx 12627 tsetndx 12641 plendx 12655 dsndx 12666 unifndx 12677 |
Copyright terms: Public domain | W3C validator |