| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ndxarg | GIF version | ||
| Description: Get the numeric argument from a defined structure component extractor such as df-base 12684. (Contributed by Mario Carneiro, 6-Oct-2013.) |
| Ref | Expression |
|---|---|
| ndxarg.1 | ⊢ 𝐸 = Slot 𝑁 |
| ndxarg.2 | ⊢ 𝑁 ∈ ℕ |
| Ref | Expression |
|---|---|
| ndxarg | ⊢ (𝐸‘ndx) = 𝑁 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ndx 12681 | . . . 4 ⊢ ndx = ( I ↾ ℕ) | |
| 2 | nnex 8996 | . . . . 5 ⊢ ℕ ∈ V | |
| 3 | resiexg 4991 | . . . . 5 ⊢ (ℕ ∈ V → ( I ↾ ℕ) ∈ V) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ( I ↾ ℕ) ∈ V |
| 5 | 1, 4 | eqeltri 2269 | . . 3 ⊢ ndx ∈ V |
| 6 | ndxarg.1 | . . 3 ⊢ 𝐸 = Slot 𝑁 | |
| 7 | ndxarg.2 | . . 3 ⊢ 𝑁 ∈ ℕ | |
| 8 | 5, 6, 7 | strnfvn 12699 | . 2 ⊢ (𝐸‘ndx) = (ndx‘𝑁) |
| 9 | 1 | fveq1i 5559 | . 2 ⊢ (ndx‘𝑁) = (( I ↾ ℕ)‘𝑁) |
| 10 | fvresi 5755 | . . 3 ⊢ (𝑁 ∈ ℕ → (( I ↾ ℕ)‘𝑁) = 𝑁) | |
| 11 | 7, 10 | ax-mp 5 | . 2 ⊢ (( I ↾ ℕ)‘𝑁) = 𝑁 |
| 12 | 8, 9, 11 | 3eqtri 2221 | 1 ⊢ (𝐸‘ndx) = 𝑁 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 Vcvv 2763 I cid 4323 ↾ cres 4665 ‘cfv 5258 ℕcn 8990 ndxcnx 12675 Slot cslot 12677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fv 5266 df-inn 8991 df-ndx 12681 df-slot 12682 |
| This theorem is referenced by: ndxid 12702 ndxslid 12703 strndxid 12706 basendx 12733 basendxnn 12734 plusgndx 12787 2strstrg 12796 2strbasg 12797 2stropg 12798 2strstr1g 12799 2strop1g 12801 basendxnplusgndx 12802 mulrndx 12807 basendxnmulrndx 12811 starvndx 12816 scandx 12828 vscandx 12834 ipndx 12846 tsetndx 12863 plendx 12877 dsndx 12888 unifndx 12899 |
| Copyright terms: Public domain | W3C validator |