Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ndxarg | GIF version |
Description: Get the numeric argument from a defined structure component extractor such as df-base 12400. (Contributed by Mario Carneiro, 6-Oct-2013.) |
Ref | Expression |
---|---|
ndxarg.1 | ⊢ 𝐸 = Slot 𝑁 |
ndxarg.2 | ⊢ 𝑁 ∈ ℕ |
Ref | Expression |
---|---|
ndxarg | ⊢ (𝐸‘ndx) = 𝑁 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ndx 12397 | . . . 4 ⊢ ndx = ( I ↾ ℕ) | |
2 | nnex 8863 | . . . . 5 ⊢ ℕ ∈ V | |
3 | resiexg 4929 | . . . . 5 ⊢ (ℕ ∈ V → ( I ↾ ℕ) ∈ V) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ( I ↾ ℕ) ∈ V |
5 | 1, 4 | eqeltri 2239 | . . 3 ⊢ ndx ∈ V |
6 | ndxarg.1 | . . 3 ⊢ 𝐸 = Slot 𝑁 | |
7 | ndxarg.2 | . . 3 ⊢ 𝑁 ∈ ℕ | |
8 | 5, 6, 7 | strnfvn 12415 | . 2 ⊢ (𝐸‘ndx) = (ndx‘𝑁) |
9 | 1 | fveq1i 5487 | . 2 ⊢ (ndx‘𝑁) = (( I ↾ ℕ)‘𝑁) |
10 | fvresi 5678 | . . 3 ⊢ (𝑁 ∈ ℕ → (( I ↾ ℕ)‘𝑁) = 𝑁) | |
11 | 7, 10 | ax-mp 5 | . 2 ⊢ (( I ↾ ℕ)‘𝑁) = 𝑁 |
12 | 8, 9, 11 | 3eqtri 2190 | 1 ⊢ (𝐸‘ndx) = 𝑁 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∈ wcel 2136 Vcvv 2726 I cid 4266 ↾ cres 4606 ‘cfv 5188 ℕcn 8857 ndxcnx 12391 Slot cslot 12393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fv 5196 df-inn 8858 df-ndx 12397 df-slot 12398 |
This theorem is referenced by: ndxid 12418 ndxslid 12419 strndxid 12422 basendx 12448 basendxnn 12449 plusgndx 12488 2strstrg 12495 2strbasg 12496 2stropg 12497 2strstr1g 12498 2strop1g 12500 basendxnplusgndx 12501 mulrndx 12505 basendxnmulrndx 12509 starvndx 12514 scandx 12522 vscandx 12525 ipndx 12533 tsetndx 12543 plendx 12550 dsndx 12553 |
Copyright terms: Public domain | W3C validator |