| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ndxarg | GIF version | ||
| Description: Get the numeric argument from a defined structure component extractor such as df-base 13004. (Contributed by Mario Carneiro, 6-Oct-2013.) |
| Ref | Expression |
|---|---|
| ndxarg.1 | ⊢ 𝐸 = Slot 𝑁 |
| ndxarg.2 | ⊢ 𝑁 ∈ ℕ |
| Ref | Expression |
|---|---|
| ndxarg | ⊢ (𝐸‘ndx) = 𝑁 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ndx 13001 | . . . 4 ⊢ ndx = ( I ↾ ℕ) | |
| 2 | nnex 9084 | . . . . 5 ⊢ ℕ ∈ V | |
| 3 | resiexg 5026 | . . . . 5 ⊢ (ℕ ∈ V → ( I ↾ ℕ) ∈ V) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ( I ↾ ℕ) ∈ V |
| 5 | 1, 4 | eqeltri 2282 | . . 3 ⊢ ndx ∈ V |
| 6 | ndxarg.1 | . . 3 ⊢ 𝐸 = Slot 𝑁 | |
| 7 | ndxarg.2 | . . 3 ⊢ 𝑁 ∈ ℕ | |
| 8 | 5, 6, 7 | strnfvn 13019 | . 2 ⊢ (𝐸‘ndx) = (ndx‘𝑁) |
| 9 | 1 | fveq1i 5604 | . 2 ⊢ (ndx‘𝑁) = (( I ↾ ℕ)‘𝑁) |
| 10 | fvresi 5805 | . . 3 ⊢ (𝑁 ∈ ℕ → (( I ↾ ℕ)‘𝑁) = 𝑁) | |
| 11 | 7, 10 | ax-mp 5 | . 2 ⊢ (( I ↾ ℕ)‘𝑁) = 𝑁 |
| 12 | 8, 9, 11 | 3eqtri 2234 | 1 ⊢ (𝐸‘ndx) = 𝑁 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1375 ∈ wcel 2180 Vcvv 2779 I cid 4356 ↾ cres 4698 ‘cfv 5294 ℕcn 9078 ndxcnx 12995 Slot cslot 12997 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-cnex 8058 ax-resscn 8059 ax-1re 8061 ax-addrcl 8064 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-iota 5254 df-fun 5296 df-fv 5302 df-inn 9079 df-ndx 13001 df-slot 13002 |
| This theorem is referenced by: ndxid 13022 ndxslid 13023 strndxid 13026 basendx 13053 basendxnn 13054 plusgndx 13108 2strstrg 13118 2strbasg 13119 2stropg 13120 2strstr1g 13121 2strop1g 13123 basendxnplusgndx 13124 mulrndx 13129 basendxnmulrndx 13133 starvndx 13138 scandx 13150 vscandx 13156 ipndx 13168 tsetndx 13185 plendx 13199 ocndx 13210 dsndx 13214 unifndx 13225 homndx 13232 ccondx 13235 edgfndx 15773 |
| Copyright terms: Public domain | W3C validator |