| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ndxarg | GIF version | ||
| Description: Get the numeric argument from a defined structure component extractor such as df-base 12711. (Contributed by Mario Carneiro, 6-Oct-2013.) |
| Ref | Expression |
|---|---|
| ndxarg.1 | ⊢ 𝐸 = Slot 𝑁 |
| ndxarg.2 | ⊢ 𝑁 ∈ ℕ |
| Ref | Expression |
|---|---|
| ndxarg | ⊢ (𝐸‘ndx) = 𝑁 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ndx 12708 | . . . 4 ⊢ ndx = ( I ↾ ℕ) | |
| 2 | nnex 9015 | . . . . 5 ⊢ ℕ ∈ V | |
| 3 | resiexg 4992 | . . . . 5 ⊢ (ℕ ∈ V → ( I ↾ ℕ) ∈ V) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ( I ↾ ℕ) ∈ V |
| 5 | 1, 4 | eqeltri 2269 | . . 3 ⊢ ndx ∈ V |
| 6 | ndxarg.1 | . . 3 ⊢ 𝐸 = Slot 𝑁 | |
| 7 | ndxarg.2 | . . 3 ⊢ 𝑁 ∈ ℕ | |
| 8 | 5, 6, 7 | strnfvn 12726 | . 2 ⊢ (𝐸‘ndx) = (ndx‘𝑁) |
| 9 | 1 | fveq1i 5562 | . 2 ⊢ (ndx‘𝑁) = (( I ↾ ℕ)‘𝑁) |
| 10 | fvresi 5758 | . . 3 ⊢ (𝑁 ∈ ℕ → (( I ↾ ℕ)‘𝑁) = 𝑁) | |
| 11 | 7, 10 | ax-mp 5 | . 2 ⊢ (( I ↾ ℕ)‘𝑁) = 𝑁 |
| 12 | 8, 9, 11 | 3eqtri 2221 | 1 ⊢ (𝐸‘ndx) = 𝑁 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 Vcvv 2763 I cid 4324 ↾ cres 4666 ‘cfv 5259 ℕcn 9009 ndxcnx 12702 Slot cslot 12704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7989 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fv 5267 df-inn 9010 df-ndx 12708 df-slot 12709 |
| This theorem is referenced by: ndxid 12729 ndxslid 12730 strndxid 12733 basendx 12760 basendxnn 12761 plusgndx 12814 2strstrg 12823 2strbasg 12824 2stropg 12825 2strstr1g 12826 2strop1g 12828 basendxnplusgndx 12829 mulrndx 12834 basendxnmulrndx 12838 starvndx 12843 scandx 12855 vscandx 12861 ipndx 12873 tsetndx 12890 plendx 12904 ocndx 12915 dsndx 12919 unifndx 12930 homndx 12937 ccondx 12940 |
| Copyright terms: Public domain | W3C validator |