ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ndxarg GIF version

Theorem ndxarg 12644
Description: Get the numeric argument from a defined structure component extractor such as df-base 12627. (Contributed by Mario Carneiro, 6-Oct-2013.)
Hypotheses
Ref Expression
ndxarg.1 𝐸 = Slot 𝑁
ndxarg.2 𝑁 ∈ ℕ
Assertion
Ref Expression
ndxarg (𝐸‘ndx) = 𝑁

Proof of Theorem ndxarg
StepHypRef Expression
1 df-ndx 12624 . . . 4 ndx = ( I ↾ ℕ)
2 nnex 8990 . . . . 5 ℕ ∈ V
3 resiexg 4988 . . . . 5 (ℕ ∈ V → ( I ↾ ℕ) ∈ V)
42, 3ax-mp 5 . . . 4 ( I ↾ ℕ) ∈ V
51, 4eqeltri 2266 . . 3 ndx ∈ V
6 ndxarg.1 . . 3 𝐸 = Slot 𝑁
7 ndxarg.2 . . 3 𝑁 ∈ ℕ
85, 6, 7strnfvn 12642 . 2 (𝐸‘ndx) = (ndx‘𝑁)
91fveq1i 5556 . 2 (ndx‘𝑁) = (( I ↾ ℕ)‘𝑁)
10 fvresi 5752 . . 3 (𝑁 ∈ ℕ → (( I ↾ ℕ)‘𝑁) = 𝑁)
117, 10ax-mp 5 . 2 (( I ↾ ℕ)‘𝑁) = 𝑁
128, 9, 113eqtri 2218 1 (𝐸‘ndx) = 𝑁
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2164  Vcvv 2760   I cid 4320  cres 4662  cfv 5255  cn 8984  ndxcnx 12618  Slot cslot 12620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fv 5263  df-inn 8985  df-ndx 12624  df-slot 12625
This theorem is referenced by:  ndxid  12645  ndxslid  12646  strndxid  12649  basendx  12676  basendxnn  12677  plusgndx  12730  2strstrg  12739  2strbasg  12740  2stropg  12741  2strstr1g  12742  2strop1g  12744  basendxnplusgndx  12745  mulrndx  12750  basendxnmulrndx  12754  starvndx  12759  scandx  12771  vscandx  12777  ipndx  12789  tsetndx  12806  plendx  12820  dsndx  12831  unifndx  12842
  Copyright terms: Public domain W3C validator