| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ndxarg | GIF version | ||
| Description: Get the numeric argument from a defined structure component extractor such as df-base 13046. (Contributed by Mario Carneiro, 6-Oct-2013.) |
| Ref | Expression |
|---|---|
| ndxarg.1 | ⊢ 𝐸 = Slot 𝑁 |
| ndxarg.2 | ⊢ 𝑁 ∈ ℕ |
| Ref | Expression |
|---|---|
| ndxarg | ⊢ (𝐸‘ndx) = 𝑁 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ndx 13043 | . . . 4 ⊢ ndx = ( I ↾ ℕ) | |
| 2 | nnex 9124 | . . . . 5 ⊢ ℕ ∈ V | |
| 3 | resiexg 5050 | . . . . 5 ⊢ (ℕ ∈ V → ( I ↾ ℕ) ∈ V) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ( I ↾ ℕ) ∈ V |
| 5 | 1, 4 | eqeltri 2302 | . . 3 ⊢ ndx ∈ V |
| 6 | ndxarg.1 | . . 3 ⊢ 𝐸 = Slot 𝑁 | |
| 7 | ndxarg.2 | . . 3 ⊢ 𝑁 ∈ ℕ | |
| 8 | 5, 6, 7 | strnfvn 13061 | . 2 ⊢ (𝐸‘ndx) = (ndx‘𝑁) |
| 9 | 1 | fveq1i 5630 | . 2 ⊢ (ndx‘𝑁) = (( I ↾ ℕ)‘𝑁) |
| 10 | fvresi 5836 | . . 3 ⊢ (𝑁 ∈ ℕ → (( I ↾ ℕ)‘𝑁) = 𝑁) | |
| 11 | 7, 10 | ax-mp 5 | . 2 ⊢ (( I ↾ ℕ)‘𝑁) = 𝑁 |
| 12 | 8, 9, 11 | 3eqtri 2254 | 1 ⊢ (𝐸‘ndx) = 𝑁 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 Vcvv 2799 I cid 4379 ↾ cres 4721 ‘cfv 5318 ℕcn 9118 ndxcnx 13037 Slot cslot 13039 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8098 ax-resscn 8099 ax-1re 8101 ax-addrcl 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fv 5326 df-inn 9119 df-ndx 13043 df-slot 13044 |
| This theorem is referenced by: ndxid 13064 ndxslid 13065 strndxid 13068 basendx 13095 basendxnn 13096 plusgndx 13150 2strstrg 13160 2strbasg 13161 2stropg 13162 2strstr1g 13163 2strop1g 13165 basendxnplusgndx 13166 mulrndx 13171 basendxnmulrndx 13175 starvndx 13180 scandx 13192 vscandx 13198 ipndx 13210 tsetndx 13227 plendx 13241 ocndx 13252 dsndx 13256 unifndx 13267 homndx 13274 ccondx 13277 edgfndx 15816 |
| Copyright terms: Public domain | W3C validator |