ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ndxarg GIF version

Theorem ndxarg 12417
Description: Get the numeric argument from a defined structure component extractor such as df-base 12400. (Contributed by Mario Carneiro, 6-Oct-2013.)
Hypotheses
Ref Expression
ndxarg.1 𝐸 = Slot 𝑁
ndxarg.2 𝑁 ∈ ℕ
Assertion
Ref Expression
ndxarg (𝐸‘ndx) = 𝑁

Proof of Theorem ndxarg
StepHypRef Expression
1 df-ndx 12397 . . . 4 ndx = ( I ↾ ℕ)
2 nnex 8863 . . . . 5 ℕ ∈ V
3 resiexg 4929 . . . . 5 (ℕ ∈ V → ( I ↾ ℕ) ∈ V)
42, 3ax-mp 5 . . . 4 ( I ↾ ℕ) ∈ V
51, 4eqeltri 2239 . . 3 ndx ∈ V
6 ndxarg.1 . . 3 𝐸 = Slot 𝑁
7 ndxarg.2 . . 3 𝑁 ∈ ℕ
85, 6, 7strnfvn 12415 . 2 (𝐸‘ndx) = (ndx‘𝑁)
91fveq1i 5487 . 2 (ndx‘𝑁) = (( I ↾ ℕ)‘𝑁)
10 fvresi 5678 . . 3 (𝑁 ∈ ℕ → (( I ↾ ℕ)‘𝑁) = 𝑁)
117, 10ax-mp 5 . 2 (( I ↾ ℕ)‘𝑁) = 𝑁
128, 9, 113eqtri 2190 1 (𝐸‘ndx) = 𝑁
Colors of variables: wff set class
Syntax hints:   = wceq 1343  wcel 2136  Vcvv 2726   I cid 4266  cres 4606  cfv 5188  cn 8857  ndxcnx 12391  Slot cslot 12393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fun 5190  df-fv 5196  df-inn 8858  df-ndx 12397  df-slot 12398
This theorem is referenced by:  ndxid  12418  ndxslid  12419  strndxid  12422  basendx  12448  basendxnn  12449  plusgndx  12488  2strstrg  12495  2strbasg  12496  2stropg  12497  2strstr1g  12498  2strop1g  12500  basendxnplusgndx  12501  mulrndx  12505  basendxnmulrndx  12509  starvndx  12514  scandx  12522  vscandx  12525  ipndx  12533  tsetndx  12543  plendx  12550  dsndx  12553
  Copyright terms: Public domain W3C validator