ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltg3 GIF version

Theorem eltg3 14293
Description: Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Revised by Jim Kingdon, 4-Mar-2023.)
Assertion
Ref Expression
eltg3 (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∃𝑥(𝑥𝐵𝐴 = 𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉

Proof of Theorem eltg3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-topgen 12931 . . . . . . 7 topGen = (𝑥 ∈ V ↦ {𝑦𝑦 (𝑥 ∩ 𝒫 𝑦)})
21funmpt2 5297 . . . . . 6 Fun topGen
3 funrel 5275 . . . . . 6 (Fun topGen → Rel topGen)
42, 3ax-mp 5 . . . . 5 Rel topGen
5 relelfvdm 5590 . . . . 5 ((Rel topGen ∧ 𝐴 ∈ (topGen‘𝐵)) → 𝐵 ∈ dom topGen)
64, 5mpan 424 . . . 4 (𝐴 ∈ (topGen‘𝐵) → 𝐵 ∈ dom topGen)
7 inex1g 4169 . . . 4 (𝐵 ∈ dom topGen → (𝐵 ∩ 𝒫 𝐴) ∈ V)
86, 7syl 14 . . 3 (𝐴 ∈ (topGen‘𝐵) → (𝐵 ∩ 𝒫 𝐴) ∈ V)
9 eltg4i 14291 . . 3 (𝐴 ∈ (topGen‘𝐵) → 𝐴 = (𝐵 ∩ 𝒫 𝐴))
10 inss1 3383 . . . . . . 7 (𝐵 ∩ 𝒫 𝐴) ⊆ 𝐵
11 sseq1 3206 . . . . . . 7 (𝑥 = (𝐵 ∩ 𝒫 𝐴) → (𝑥𝐵 ↔ (𝐵 ∩ 𝒫 𝐴) ⊆ 𝐵))
1210, 11mpbiri 168 . . . . . 6 (𝑥 = (𝐵 ∩ 𝒫 𝐴) → 𝑥𝐵)
1312biantrurd 305 . . . . 5 (𝑥 = (𝐵 ∩ 𝒫 𝐴) → (𝐴 = 𝑥 ↔ (𝑥𝐵𝐴 = 𝑥)))
14 unieq 3848 . . . . . 6 (𝑥 = (𝐵 ∩ 𝒫 𝐴) → 𝑥 = (𝐵 ∩ 𝒫 𝐴))
1514eqeq2d 2208 . . . . 5 (𝑥 = (𝐵 ∩ 𝒫 𝐴) → (𝐴 = 𝑥𝐴 = (𝐵 ∩ 𝒫 𝐴)))
1613, 15bitr3d 190 . . . 4 (𝑥 = (𝐵 ∩ 𝒫 𝐴) → ((𝑥𝐵𝐴 = 𝑥) ↔ 𝐴 = (𝐵 ∩ 𝒫 𝐴)))
1716spcegv 2852 . . 3 ((𝐵 ∩ 𝒫 𝐴) ∈ V → (𝐴 = (𝐵 ∩ 𝒫 𝐴) → ∃𝑥(𝑥𝐵𝐴 = 𝑥)))
188, 9, 17sylc 62 . 2 (𝐴 ∈ (topGen‘𝐵) → ∃𝑥(𝑥𝐵𝐴 = 𝑥))
19 eltg3i 14292 . . . . 5 ((𝐵𝑉𝑥𝐵) → 𝑥 ∈ (topGen‘𝐵))
20 eleq1 2259 . . . . 5 (𝐴 = 𝑥 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝑥 ∈ (topGen‘𝐵)))
2119, 20syl5ibrcom 157 . . . 4 ((𝐵𝑉𝑥𝐵) → (𝐴 = 𝑥𝐴 ∈ (topGen‘𝐵)))
2221expimpd 363 . . 3 (𝐵𝑉 → ((𝑥𝐵𝐴 = 𝑥) → 𝐴 ∈ (topGen‘𝐵)))
2322exlimdv 1833 . 2 (𝐵𝑉 → (∃𝑥(𝑥𝐵𝐴 = 𝑥) → 𝐴 ∈ (topGen‘𝐵)))
2418, 23impbid2 143 1 (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∃𝑥(𝑥𝐵𝐴 = 𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1506  wcel 2167  {cab 2182  Vcvv 2763  cin 3156  wss 3157  𝒫 cpw 3605   cuni 3839  dom cdm 4663  Rel wrel 4668  Fun wfun 5252  cfv 5258  topGenctg 12925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-topgen 12931
This theorem is referenced by:  tgval3  14294  tgtop  14304  eltop3  14307  tgidm  14310  bastop1  14319  tgrest  14405  tgcn  14444  txbasval  14503
  Copyright terms: Public domain W3C validator