| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eltg3 | GIF version | ||
| Description: Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Revised by Jim Kingdon, 4-Mar-2023.) | 
| Ref | Expression | 
|---|---|
| eltg3 | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-topgen 12931 | . . . . . . 7 ⊢ topGen = (𝑥 ∈ V ↦ {𝑦 ∣ 𝑦 ⊆ ∪ (𝑥 ∩ 𝒫 𝑦)}) | |
| 2 | 1 | funmpt2 5297 | . . . . . 6 ⊢ Fun topGen | 
| 3 | funrel 5275 | . . . . . 6 ⊢ (Fun topGen → Rel topGen) | |
| 4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ Rel topGen | 
| 5 | relelfvdm 5590 | . . . . 5 ⊢ ((Rel topGen ∧ 𝐴 ∈ (topGen‘𝐵)) → 𝐵 ∈ dom topGen) | |
| 6 | 4, 5 | mpan 424 | . . . 4 ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐵 ∈ dom topGen) | 
| 7 | inex1g 4169 | . . . 4 ⊢ (𝐵 ∈ dom topGen → (𝐵 ∩ 𝒫 𝐴) ∈ V) | |
| 8 | 6, 7 | syl 14 | . . 3 ⊢ (𝐴 ∈ (topGen‘𝐵) → (𝐵 ∩ 𝒫 𝐴) ∈ V) | 
| 9 | eltg4i 14291 | . . 3 ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐴 = ∪ (𝐵 ∩ 𝒫 𝐴)) | |
| 10 | inss1 3383 | . . . . . . 7 ⊢ (𝐵 ∩ 𝒫 𝐴) ⊆ 𝐵 | |
| 11 | sseq1 3206 | . . . . . . 7 ⊢ (𝑥 = (𝐵 ∩ 𝒫 𝐴) → (𝑥 ⊆ 𝐵 ↔ (𝐵 ∩ 𝒫 𝐴) ⊆ 𝐵)) | |
| 12 | 10, 11 | mpbiri 168 | . . . . . 6 ⊢ (𝑥 = (𝐵 ∩ 𝒫 𝐴) → 𝑥 ⊆ 𝐵) | 
| 13 | 12 | biantrurd 305 | . . . . 5 ⊢ (𝑥 = (𝐵 ∩ 𝒫 𝐴) → (𝐴 = ∪ 𝑥 ↔ (𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥))) | 
| 14 | unieq 3848 | . . . . . 6 ⊢ (𝑥 = (𝐵 ∩ 𝒫 𝐴) → ∪ 𝑥 = ∪ (𝐵 ∩ 𝒫 𝐴)) | |
| 15 | 14 | eqeq2d 2208 | . . . . 5 ⊢ (𝑥 = (𝐵 ∩ 𝒫 𝐴) → (𝐴 = ∪ 𝑥 ↔ 𝐴 = ∪ (𝐵 ∩ 𝒫 𝐴))) | 
| 16 | 13, 15 | bitr3d 190 | . . . 4 ⊢ (𝑥 = (𝐵 ∩ 𝒫 𝐴) → ((𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥) ↔ 𝐴 = ∪ (𝐵 ∩ 𝒫 𝐴))) | 
| 17 | 16 | spcegv 2852 | . . 3 ⊢ ((𝐵 ∩ 𝒫 𝐴) ∈ V → (𝐴 = ∪ (𝐵 ∩ 𝒫 𝐴) → ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥))) | 
| 18 | 8, 9, 17 | sylc 62 | . 2 ⊢ (𝐴 ∈ (topGen‘𝐵) → ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥)) | 
| 19 | eltg3i 14292 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ⊆ 𝐵) → ∪ 𝑥 ∈ (topGen‘𝐵)) | |
| 20 | eleq1 2259 | . . . . 5 ⊢ (𝐴 = ∪ 𝑥 → (𝐴 ∈ (topGen‘𝐵) ↔ ∪ 𝑥 ∈ (topGen‘𝐵))) | |
| 21 | 19, 20 | syl5ibrcom 157 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ⊆ 𝐵) → (𝐴 = ∪ 𝑥 → 𝐴 ∈ (topGen‘𝐵))) | 
| 22 | 21 | expimpd 363 | . . 3 ⊢ (𝐵 ∈ 𝑉 → ((𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥) → 𝐴 ∈ (topGen‘𝐵))) | 
| 23 | 22 | exlimdv 1833 | . 2 ⊢ (𝐵 ∈ 𝑉 → (∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥) → 𝐴 ∈ (topGen‘𝐵))) | 
| 24 | 18, 23 | impbid2 143 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∃wex 1506 ∈ wcel 2167 {cab 2182 Vcvv 2763 ∩ cin 3156 ⊆ wss 3157 𝒫 cpw 3605 ∪ cuni 3839 dom cdm 4663 Rel wrel 4668 Fun wfun 5252 ‘cfv 5258 topGenctg 12925 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-topgen 12931 | 
| This theorem is referenced by: tgval3 14294 tgtop 14304 eltop3 14307 tgidm 14310 bastop1 14319 tgrest 14405 tgcn 14444 txbasval 14503 | 
| Copyright terms: Public domain | W3C validator |