Step | Hyp | Ref
| Expression |
1 | | df-topgen 12714 |
. . . . . . 7
β’ topGen =
(π₯ β V β¦ {π¦ β£ π¦ β βͺ (π₯ β© π« π¦)}) |
2 | 1 | funmpt2 5257 |
. . . . . 6
β’ Fun
topGen |
3 | | funrel 5235 |
. . . . . 6
β’ (Fun
topGen β Rel topGen) |
4 | 2, 3 | ax-mp 5 |
. . . . 5
β’ Rel
topGen |
5 | | relelfvdm 5549 |
. . . . 5
β’ ((Rel
topGen β§ π΄ β
(topGenβπ΅)) β
π΅ β dom
topGen) |
6 | 4, 5 | mpan 424 |
. . . 4
β’ (π΄ β (topGenβπ΅) β π΅ β dom topGen) |
7 | | inex1g 4141 |
. . . 4
β’ (π΅ β dom topGen β (π΅ β© π« π΄) β V) |
8 | 6, 7 | syl 14 |
. . 3
β’ (π΄ β (topGenβπ΅) β (π΅ β© π« π΄) β V) |
9 | | eltg4i 13640 |
. . 3
β’ (π΄ β (topGenβπ΅) β π΄ = βͺ (π΅ β© π« π΄)) |
10 | | inss1 3357 |
. . . . . . 7
β’ (π΅ β© π« π΄) β π΅ |
11 | | sseq1 3180 |
. . . . . . 7
β’ (π₯ = (π΅ β© π« π΄) β (π₯ β π΅ β (π΅ β© π« π΄) β π΅)) |
12 | 10, 11 | mpbiri 168 |
. . . . . 6
β’ (π₯ = (π΅ β© π« π΄) β π₯ β π΅) |
13 | 12 | biantrurd 305 |
. . . . 5
β’ (π₯ = (π΅ β© π« π΄) β (π΄ = βͺ π₯ β (π₯ β π΅ β§ π΄ = βͺ π₯))) |
14 | | unieq 3820 |
. . . . . 6
β’ (π₯ = (π΅ β© π« π΄) β βͺ π₯ = βͺ
(π΅ β© π« π΄)) |
15 | 14 | eqeq2d 2189 |
. . . . 5
β’ (π₯ = (π΅ β© π« π΄) β (π΄ = βͺ π₯ β π΄ = βͺ (π΅ β© π« π΄))) |
16 | 13, 15 | bitr3d 190 |
. . . 4
β’ (π₯ = (π΅ β© π« π΄) β ((π₯ β π΅ β§ π΄ = βͺ π₯) β π΄ = βͺ (π΅ β© π« π΄))) |
17 | 16 | spcegv 2827 |
. . 3
β’ ((π΅ β© π« π΄) β V β (π΄ = βͺ
(π΅ β© π« π΄) β βπ₯(π₯ β π΅ β§ π΄ = βͺ π₯))) |
18 | 8, 9, 17 | sylc 62 |
. 2
β’ (π΄ β (topGenβπ΅) β βπ₯(π₯ β π΅ β§ π΄ = βͺ π₯)) |
19 | | eltg3i 13641 |
. . . . 5
β’ ((π΅ β π β§ π₯ β π΅) β βͺ π₯ β (topGenβπ΅)) |
20 | | eleq1 2240 |
. . . . 5
β’ (π΄ = βͺ
π₯ β (π΄ β (topGenβπ΅) β βͺ π₯ β (topGenβπ΅))) |
21 | 19, 20 | syl5ibrcom 157 |
. . . 4
β’ ((π΅ β π β§ π₯ β π΅) β (π΄ = βͺ π₯ β π΄ β (topGenβπ΅))) |
22 | 21 | expimpd 363 |
. . 3
β’ (π΅ β π β ((π₯ β π΅ β§ π΄ = βͺ π₯) β π΄ β (topGenβπ΅))) |
23 | 22 | exlimdv 1819 |
. 2
β’ (π΅ β π β (βπ₯(π₯ β π΅ β§ π΄ = βͺ π₯) β π΄ β (topGenβπ΅))) |
24 | 18, 23 | impbid2 143 |
1
β’ (π΅ β π β (π΄ β (topGenβπ΅) β βπ₯(π₯ β π΅ β§ π΄ = βͺ π₯))) |