ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltg3 GIF version

Theorem eltg3 14034
Description: Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Revised by Jim Kingdon, 4-Mar-2023.)
Assertion
Ref Expression
eltg3 (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∃𝑥(𝑥𝐵𝐴 = 𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉

Proof of Theorem eltg3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-topgen 12768 . . . . . . 7 topGen = (𝑥 ∈ V ↦ {𝑦𝑦 (𝑥 ∩ 𝒫 𝑦)})
21funmpt2 5274 . . . . . 6 Fun topGen
3 funrel 5252 . . . . . 6 (Fun topGen → Rel topGen)
42, 3ax-mp 5 . . . . 5 Rel topGen
5 relelfvdm 5566 . . . . 5 ((Rel topGen ∧ 𝐴 ∈ (topGen‘𝐵)) → 𝐵 ∈ dom topGen)
64, 5mpan 424 . . . 4 (𝐴 ∈ (topGen‘𝐵) → 𝐵 ∈ dom topGen)
7 inex1g 4154 . . . 4 (𝐵 ∈ dom topGen → (𝐵 ∩ 𝒫 𝐴) ∈ V)
86, 7syl 14 . . 3 (𝐴 ∈ (topGen‘𝐵) → (𝐵 ∩ 𝒫 𝐴) ∈ V)
9 eltg4i 14032 . . 3 (𝐴 ∈ (topGen‘𝐵) → 𝐴 = (𝐵 ∩ 𝒫 𝐴))
10 inss1 3370 . . . . . . 7 (𝐵 ∩ 𝒫 𝐴) ⊆ 𝐵
11 sseq1 3193 . . . . . . 7 (𝑥 = (𝐵 ∩ 𝒫 𝐴) → (𝑥𝐵 ↔ (𝐵 ∩ 𝒫 𝐴) ⊆ 𝐵))
1210, 11mpbiri 168 . . . . . 6 (𝑥 = (𝐵 ∩ 𝒫 𝐴) → 𝑥𝐵)
1312biantrurd 305 . . . . 5 (𝑥 = (𝐵 ∩ 𝒫 𝐴) → (𝐴 = 𝑥 ↔ (𝑥𝐵𝐴 = 𝑥)))
14 unieq 3833 . . . . . 6 (𝑥 = (𝐵 ∩ 𝒫 𝐴) → 𝑥 = (𝐵 ∩ 𝒫 𝐴))
1514eqeq2d 2201 . . . . 5 (𝑥 = (𝐵 ∩ 𝒫 𝐴) → (𝐴 = 𝑥𝐴 = (𝐵 ∩ 𝒫 𝐴)))
1613, 15bitr3d 190 . . . 4 (𝑥 = (𝐵 ∩ 𝒫 𝐴) → ((𝑥𝐵𝐴 = 𝑥) ↔ 𝐴 = (𝐵 ∩ 𝒫 𝐴)))
1716spcegv 2840 . . 3 ((𝐵 ∩ 𝒫 𝐴) ∈ V → (𝐴 = (𝐵 ∩ 𝒫 𝐴) → ∃𝑥(𝑥𝐵𝐴 = 𝑥)))
188, 9, 17sylc 62 . 2 (𝐴 ∈ (topGen‘𝐵) → ∃𝑥(𝑥𝐵𝐴 = 𝑥))
19 eltg3i 14033 . . . . 5 ((𝐵𝑉𝑥𝐵) → 𝑥 ∈ (topGen‘𝐵))
20 eleq1 2252 . . . . 5 (𝐴 = 𝑥 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝑥 ∈ (topGen‘𝐵)))
2119, 20syl5ibrcom 157 . . . 4 ((𝐵𝑉𝑥𝐵) → (𝐴 = 𝑥𝐴 ∈ (topGen‘𝐵)))
2221expimpd 363 . . 3 (𝐵𝑉 → ((𝑥𝐵𝐴 = 𝑥) → 𝐴 ∈ (topGen‘𝐵)))
2322exlimdv 1830 . 2 (𝐵𝑉 → (∃𝑥(𝑥𝐵𝐴 = 𝑥) → 𝐴 ∈ (topGen‘𝐵)))
2418, 23impbid2 143 1 (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∃𝑥(𝑥𝐵𝐴 = 𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1503  wcel 2160  {cab 2175  Vcvv 2752  cin 3143  wss 3144  𝒫 cpw 3590   cuni 3824  dom cdm 4644  Rel wrel 4649  Fun wfun 5229  cfv 5235  topGenctg 12762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-topgen 12768
This theorem is referenced by:  tgval3  14035  tgtop  14045  eltop3  14048  tgidm  14051  bastop1  14060  tgrest  14146  tgcn  14185  txbasval  14244
  Copyright terms: Public domain W3C validator