ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltg3 GIF version

Theorem eltg3 13108
Description: Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Revised by Jim Kingdon, 4-Mar-2023.)
Assertion
Ref Expression
eltg3 (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∃𝑥(𝑥𝐵𝐴 = 𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉

Proof of Theorem eltg3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-topgen 12629 . . . . . . 7 topGen = (𝑥 ∈ V ↦ {𝑦𝑦 (𝑥 ∩ 𝒫 𝑦)})
21funmpt2 5247 . . . . . 6 Fun topGen
3 funrel 5225 . . . . . 6 (Fun topGen → Rel topGen)
42, 3ax-mp 5 . . . . 5 Rel topGen
5 relelfvdm 5539 . . . . 5 ((Rel topGen ∧ 𝐴 ∈ (topGen‘𝐵)) → 𝐵 ∈ dom topGen)
64, 5mpan 424 . . . 4 (𝐴 ∈ (topGen‘𝐵) → 𝐵 ∈ dom topGen)
7 inex1g 4134 . . . 4 (𝐵 ∈ dom topGen → (𝐵 ∩ 𝒫 𝐴) ∈ V)
86, 7syl 14 . . 3 (𝐴 ∈ (topGen‘𝐵) → (𝐵 ∩ 𝒫 𝐴) ∈ V)
9 eltg4i 13106 . . 3 (𝐴 ∈ (topGen‘𝐵) → 𝐴 = (𝐵 ∩ 𝒫 𝐴))
10 inss1 3353 . . . . . . 7 (𝐵 ∩ 𝒫 𝐴) ⊆ 𝐵
11 sseq1 3176 . . . . . . 7 (𝑥 = (𝐵 ∩ 𝒫 𝐴) → (𝑥𝐵 ↔ (𝐵 ∩ 𝒫 𝐴) ⊆ 𝐵))
1210, 11mpbiri 168 . . . . . 6 (𝑥 = (𝐵 ∩ 𝒫 𝐴) → 𝑥𝐵)
1312biantrurd 305 . . . . 5 (𝑥 = (𝐵 ∩ 𝒫 𝐴) → (𝐴 = 𝑥 ↔ (𝑥𝐵𝐴 = 𝑥)))
14 unieq 3814 . . . . . 6 (𝑥 = (𝐵 ∩ 𝒫 𝐴) → 𝑥 = (𝐵 ∩ 𝒫 𝐴))
1514eqeq2d 2187 . . . . 5 (𝑥 = (𝐵 ∩ 𝒫 𝐴) → (𝐴 = 𝑥𝐴 = (𝐵 ∩ 𝒫 𝐴)))
1613, 15bitr3d 190 . . . 4 (𝑥 = (𝐵 ∩ 𝒫 𝐴) → ((𝑥𝐵𝐴 = 𝑥) ↔ 𝐴 = (𝐵 ∩ 𝒫 𝐴)))
1716spcegv 2823 . . 3 ((𝐵 ∩ 𝒫 𝐴) ∈ V → (𝐴 = (𝐵 ∩ 𝒫 𝐴) → ∃𝑥(𝑥𝐵𝐴 = 𝑥)))
188, 9, 17sylc 62 . 2 (𝐴 ∈ (topGen‘𝐵) → ∃𝑥(𝑥𝐵𝐴 = 𝑥))
19 eltg3i 13107 . . . . 5 ((𝐵𝑉𝑥𝐵) → 𝑥 ∈ (topGen‘𝐵))
20 eleq1 2238 . . . . 5 (𝐴 = 𝑥 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝑥 ∈ (topGen‘𝐵)))
2119, 20syl5ibrcom 157 . . . 4 ((𝐵𝑉𝑥𝐵) → (𝐴 = 𝑥𝐴 ∈ (topGen‘𝐵)))
2221expimpd 363 . . 3 (𝐵𝑉 → ((𝑥𝐵𝐴 = 𝑥) → 𝐴 ∈ (topGen‘𝐵)))
2322exlimdv 1817 . 2 (𝐵𝑉 → (∃𝑥(𝑥𝐵𝐴 = 𝑥) → 𝐴 ∈ (topGen‘𝐵)))
2418, 23impbid2 143 1 (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∃𝑥(𝑥𝐵𝐴 = 𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wex 1490  wcel 2146  {cab 2161  Vcvv 2735  cin 3126  wss 3127  𝒫 cpw 3572   cuni 3805  dom cdm 4620  Rel wrel 4625  Fun wfun 5202  cfv 5208  topGenctg 12623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-iota 5170  df-fun 5210  df-fv 5216  df-topgen 12629
This theorem is referenced by:  tgval3  13109  tgtop  13119  eltop3  13122  tgidm  13125  bastop1  13134  tgrest  13220  tgcn  13259  txbasval  13318
  Copyright terms: Public domain W3C validator