Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > toponuni | GIF version |
Description: The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
toponuni | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istopon 13082 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) | |
2 | 1 | simprbi 275 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2146 ∪ cuni 3805 ‘cfv 5208 Topctop 13066 TopOnctopon 13079 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-topon 13080 |
This theorem is referenced by: toponunii 13086 toponmax 13094 toponss 13095 toponcom 13096 topgele 13098 topontopn 13106 restuni 13243 resttopon2 13249 lmfval 13263 cnfval 13265 cnpfval 13266 cnprcl2k 13277 ssidcn 13281 iscnp4 13289 cnntr 13296 cncnp 13301 cnptopresti 13309 txtopon 13333 txuni 13334 cnmpt1t 13356 cnmpt2t 13364 cnmpt1res 13367 cnmpt2res 13368 mopnuni 13516 isxms2 13523 limccnp2lem 13716 limccnp2cntop 13717 dvfvalap 13721 dvbss 13725 dvfgg 13728 dvcnp2cntop 13734 dvaddxxbr 13736 dvmulxxbr 13737 |
Copyright terms: Public domain | W3C validator |