![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > toponuni | GIF version |
Description: The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
toponuni | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istopon 14181 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) | |
2 | 1 | simprbi 275 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ∪ cuni 3835 ‘cfv 5254 Topctop 14165 TopOnctopon 14178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-topon 14179 |
This theorem is referenced by: toponunii 14185 toponmax 14193 toponss 14194 toponcom 14195 topgele 14197 topontopn 14205 restuni 14340 resttopon2 14346 lmfval 14360 cnfval 14362 cnpfval 14363 cnprcl2k 14374 ssidcn 14378 iscnp4 14386 cnntr 14393 cncnp 14398 cnptopresti 14406 txtopon 14430 txuni 14431 cnmpt1t 14453 cnmpt2t 14461 cnmpt1res 14464 cnmpt2res 14465 mopnuni 14613 isxms2 14620 limccnp2lem 14830 limccnp2cntop 14831 dvfvalap 14835 dvbss 14839 dvfgg 14842 dvcnp2cntop 14848 dvaddxxbr 14850 dvmulxxbr 14851 |
Copyright terms: Public domain | W3C validator |