| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > toponuni | GIF version | ||
| Description: The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| toponuni | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istopon 14695 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) | |
| 2 | 1 | simprbi 275 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ∪ cuni 3888 ‘cfv 5318 Topctop 14679 TopOnctopon 14692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-topon 14693 |
| This theorem is referenced by: toponunii 14699 toponmax 14707 toponss 14708 toponcom 14709 topgele 14711 topontopn 14719 restuni 14854 resttopon2 14860 lmfval 14875 cnfval 14876 cnpfval 14877 cnprcl2k 14888 ssidcn 14892 iscnp4 14900 cnntr 14907 cncnp 14912 cnptopresti 14920 txtopon 14944 txuni 14945 cnmpt1t 14967 cnmpt2t 14975 cnmpt1res 14978 cnmpt2res 14979 mopnuni 15127 isxms2 15134 limccnp2lem 15358 limccnp2cntop 15359 dvfvalap 15363 dvbss 15367 dvfgg 15370 dvcnp2cntop 15381 dvaddxxbr 15383 dvmulxxbr 15384 |
| Copyright terms: Public domain | W3C validator |