ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  toponuni GIF version

Theorem toponuni 14557
Description: The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
toponuni (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = 𝐽)

Proof of Theorem toponuni
StepHypRef Expression
1 istopon 14555 . 2 (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = 𝐽))
21simprbi 275 1 (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = 𝐽)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177   cuni 3855  cfv 5279  Topctop 14539  TopOnctopon 14552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-iota 5240  df-fun 5281  df-fv 5287  df-topon 14553
This theorem is referenced by:  toponunii  14559  toponmax  14567  toponss  14568  toponcom  14569  topgele  14571  topontopn  14579  restuni  14714  resttopon2  14720  lmfval  14734  cnfval  14736  cnpfval  14737  cnprcl2k  14748  ssidcn  14752  iscnp4  14760  cnntr  14767  cncnp  14772  cnptopresti  14780  txtopon  14804  txuni  14805  cnmpt1t  14827  cnmpt2t  14835  cnmpt1res  14838  cnmpt2res  14839  mopnuni  14987  isxms2  14994  limccnp2lem  15218  limccnp2cntop  15219  dvfvalap  15223  dvbss  15227  dvfgg  15230  dvcnp2cntop  15241  dvaddxxbr  15243  dvmulxxbr  15244
  Copyright terms: Public domain W3C validator