![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0split | GIF version |
Description: Express the set of nonnegative integers as the disjoint (see nn0disj 9545) union of the first 𝑁 + 1 values and the rest. (Contributed by AV, 8-Nov-2019.) |
Ref | Expression |
---|---|
nn0split | ⊢ (𝑁 ∈ ℕ0 → ℕ0 = ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0uz 9051 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
2 | 1 | a1i 9 | . 2 ⊢ (𝑁 ∈ ℕ0 → ℕ0 = (ℤ≥‘0)) |
3 | peano2nn0 8711 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) | |
4 | 3, 1 | syl6eleq 2180 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (ℤ≥‘0)) |
5 | uzsplit 9502 | . . 3 ⊢ ((𝑁 + 1) ∈ (ℤ≥‘0) → (ℤ≥‘0) = ((0...((𝑁 + 1) − 1)) ∪ (ℤ≥‘(𝑁 + 1)))) | |
6 | 4, 5 | syl 14 | . 2 ⊢ (𝑁 ∈ ℕ0 → (ℤ≥‘0) = ((0...((𝑁 + 1) − 1)) ∪ (ℤ≥‘(𝑁 + 1)))) |
7 | nn0cn 8681 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
8 | pncan1 7853 | . . . . 5 ⊢ (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁) | |
9 | 7, 8 | syl 14 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁) |
10 | 9 | oveq2d 5668 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (0...((𝑁 + 1) − 1)) = (0...𝑁)) |
11 | 10 | uneq1d 3153 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((0...((𝑁 + 1) − 1)) ∪ (ℤ≥‘(𝑁 + 1))) = ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1)))) |
12 | 2, 6, 11 | 3eqtrd 2124 | 1 ⊢ (𝑁 ∈ ℕ0 → ℕ0 = ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1289 ∈ wcel 1438 ∪ cun 2997 ‘cfv 5015 (class class class)co 5652 ℂcc 7346 0cc0 7348 1c1 7349 + caddc 7351 − cmin 7651 ℕ0cn0 8671 ℤ≥cuz 9017 ...cfz 9422 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 ax-un 4260 ax-setind 4353 ax-cnex 7434 ax-resscn 7435 ax-1cn 7436 ax-1re 7437 ax-icn 7438 ax-addcl 7439 ax-addrcl 7440 ax-mulcl 7441 ax-addcom 7443 ax-addass 7445 ax-distr 7447 ax-i2m1 7448 ax-0lt1 7449 ax-0id 7451 ax-rnegex 7452 ax-cnre 7454 ax-pre-ltirr 7455 ax-pre-ltwlin 7456 ax-pre-lttrn 7457 ax-pre-ltadd 7459 |
This theorem depends on definitions: df-bi 115 df-3or 925 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-nel 2351 df-ral 2364 df-rex 2365 df-reu 2366 df-rab 2368 df-v 2621 df-sbc 2841 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-int 3689 df-br 3846 df-opab 3900 df-mpt 3901 df-id 4120 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-res 4450 df-ima 4451 df-iota 4980 df-fun 5017 df-fn 5018 df-f 5019 df-fv 5023 df-riota 5608 df-ov 5655 df-oprab 5656 df-mpt2 5657 df-pnf 7522 df-mnf 7523 df-xr 7524 df-ltxr 7525 df-le 7526 df-sub 7653 df-neg 7654 df-inn 8421 df-n0 8672 df-z 8749 df-uz 9018 df-fz 9423 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |