ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0split GIF version

Theorem nn0split 10340
Description: Express the set of nonnegative integers as the disjoint (see nn0disj 10342) union of the first 𝑁 + 1 values and the rest. (Contributed by AV, 8-Nov-2019.)
Assertion
Ref Expression
nn0split (𝑁 ∈ ℕ0 → ℕ0 = ((0...𝑁) ∪ (ℤ‘(𝑁 + 1))))

Proof of Theorem nn0split
StepHypRef Expression
1 nn0uz 9765 . . 3 0 = (ℤ‘0)
21a1i 9 . 2 (𝑁 ∈ ℕ0 → ℕ0 = (ℤ‘0))
3 peano2nn0 9417 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
43, 1eleqtrdi 2322 . . 3 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (ℤ‘0))
5 uzsplit 10296 . . 3 ((𝑁 + 1) ∈ (ℤ‘0) → (ℤ‘0) = ((0...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))))
64, 5syl 14 . 2 (𝑁 ∈ ℕ0 → (ℤ‘0) = ((0...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))))
7 nn0cn 9387 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
8 pncan1 8531 . . . . 5 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
97, 8syl 14 . . . 4 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
109oveq2d 6023 . . 3 (𝑁 ∈ ℕ0 → (0...((𝑁 + 1) − 1)) = (0...𝑁))
1110uneq1d 3357 . 2 (𝑁 ∈ ℕ0 → ((0...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))) = ((0...𝑁) ∪ (ℤ‘(𝑁 + 1))))
122, 6, 113eqtrd 2266 1 (𝑁 ∈ ℕ0 → ℕ0 = ((0...𝑁) ∪ (ℤ‘(𝑁 + 1))))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  cun 3195  cfv 5318  (class class class)co 6007  cc 8005  0cc0 8007  1c1 8008   + caddc 8010  cmin 8325  0cn0 9377  cuz 9730  ...cfz 10212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-n0 9378  df-z 9455  df-uz 9731  df-fz 10213
This theorem is referenced by:  plycoeid3  15439
  Copyright terms: Public domain W3C validator