ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omsuc GIF version

Theorem omsuc 6322
Description: Multiplication with successor. Definition 8.15 of [TakeutiZaring] p. 62. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
omsuc ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) +o 𝐴))

Proof of Theorem omsuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-suc 4253 . . . . . . 7 suc 𝐵 = (𝐵 ∪ {𝐵})
2 iuneq1 3792 . . . . . . 7 (suc 𝐵 = (𝐵 ∪ {𝐵}) → 𝑥 ∈ suc 𝐵((𝐴 ·o 𝑥) +o 𝐴) = 𝑥 ∈ (𝐵 ∪ {𝐵})((𝐴 ·o 𝑥) +o 𝐴))
31, 2ax-mp 7 . . . . . 6 𝑥 ∈ suc 𝐵((𝐴 ·o 𝑥) +o 𝐴) = 𝑥 ∈ (𝐵 ∪ {𝐵})((𝐴 ·o 𝑥) +o 𝐴)
4 iunxun 3858 . . . . . 6 𝑥 ∈ (𝐵 ∪ {𝐵})((𝐴 ·o 𝑥) +o 𝐴) = ( 𝑥𝐵 ((𝐴 ·o 𝑥) +o 𝐴) ∪ 𝑥 ∈ {𝐵} ((𝐴 ·o 𝑥) +o 𝐴))
53, 4eqtri 2135 . . . . 5 𝑥 ∈ suc 𝐵((𝐴 ·o 𝑥) +o 𝐴) = ( 𝑥𝐵 ((𝐴 ·o 𝑥) +o 𝐴) ∪ 𝑥 ∈ {𝐵} ((𝐴 ·o 𝑥) +o 𝐴))
6 oveq2 5736 . . . . . . . 8 (𝑥 = 𝐵 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝐵))
76oveq1d 5743 . . . . . . 7 (𝑥 = 𝐵 → ((𝐴 ·o 𝑥) +o 𝐴) = ((𝐴 ·o 𝐵) +o 𝐴))
87iunxsng 3854 . . . . . 6 (𝐵 ∈ On → 𝑥 ∈ {𝐵} ((𝐴 ·o 𝑥) +o 𝐴) = ((𝐴 ·o 𝐵) +o 𝐴))
98uneq2d 3196 . . . . 5 (𝐵 ∈ On → ( 𝑥𝐵 ((𝐴 ·o 𝑥) +o 𝐴) ∪ 𝑥 ∈ {𝐵} ((𝐴 ·o 𝑥) +o 𝐴)) = ( 𝑥𝐵 ((𝐴 ·o 𝑥) +o 𝐴) ∪ ((𝐴 ·o 𝐵) +o 𝐴)))
105, 9syl5eq 2159 . . . 4 (𝐵 ∈ On → 𝑥 ∈ suc 𝐵((𝐴 ·o 𝑥) +o 𝐴) = ( 𝑥𝐵 ((𝐴 ·o 𝑥) +o 𝐴) ∪ ((𝐴 ·o 𝐵) +o 𝐴)))
1110adantl 273 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝑥 ∈ suc 𝐵((𝐴 ·o 𝑥) +o 𝐴) = ( 𝑥𝐵 ((𝐴 ·o 𝑥) +o 𝐴) ∪ ((𝐴 ·o 𝐵) +o 𝐴)))
12 suceloni 4377 . . . 4 (𝐵 ∈ On → suc 𝐵 ∈ On)
13 omv2 6315 . . . 4 ((𝐴 ∈ On ∧ suc 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = 𝑥 ∈ suc 𝐵((𝐴 ·o 𝑥) +o 𝐴))
1412, 13sylan2 282 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = 𝑥 ∈ suc 𝐵((𝐴 ·o 𝑥) +o 𝐴))
15 omv2 6315 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = 𝑥𝐵 ((𝐴 ·o 𝑥) +o 𝐴))
1615uneq1d 3195 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) ∪ ((𝐴 ·o 𝐵) +o 𝐴)) = ( 𝑥𝐵 ((𝐴 ·o 𝑥) +o 𝐴) ∪ ((𝐴 ·o 𝐵) +o 𝐴)))
1711, 14, 163eqtr4d 2157 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) ∪ ((𝐴 ·o 𝐵) +o 𝐴)))
18 omcl 6311 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On)
19 simpl 108 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ∈ On)
20 oaword1 6321 . . . 4 (((𝐴 ·o 𝐵) ∈ On ∧ 𝐴 ∈ On) → (𝐴 ·o 𝐵) ⊆ ((𝐴 ·o 𝐵) +o 𝐴))
21 ssequn1 3212 . . . 4 ((𝐴 ·o 𝐵) ⊆ ((𝐴 ·o 𝐵) +o 𝐴) ↔ ((𝐴 ·o 𝐵) ∪ ((𝐴 ·o 𝐵) +o 𝐴)) = ((𝐴 ·o 𝐵) +o 𝐴))
2220, 21sylib 121 . . 3 (((𝐴 ·o 𝐵) ∈ On ∧ 𝐴 ∈ On) → ((𝐴 ·o 𝐵) ∪ ((𝐴 ·o 𝐵) +o 𝐴)) = ((𝐴 ·o 𝐵) +o 𝐴))
2318, 19, 22syl2anc 406 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) ∪ ((𝐴 ·o 𝐵) +o 𝐴)) = ((𝐴 ·o 𝐵) +o 𝐴))
2417, 23eqtrd 2147 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) +o 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1314  wcel 1463  cun 3035  wss 3037  {csn 3493   ciun 3779  Oncon0 4245  suc csuc 4247  (class class class)co 5728   +o coa 6264   ·o comu 6265
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-id 4175  df-iord 4248  df-on 4250  df-suc 4253  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-recs 6156  df-irdg 6221  df-oadd 6271  df-omul 6272
This theorem is referenced by:  onmsuc  6323
  Copyright terms: Public domain W3C validator