ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omsuc GIF version

Theorem omsuc 6440
Description: Multiplication with successor. Definition 8.15 of [TakeutiZaring] p. 62. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
omsuc ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) +o 𝐴))

Proof of Theorem omsuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-suc 4349 . . . . . . 7 suc 𝐵 = (𝐵 ∪ {𝐵})
2 iuneq1 3879 . . . . . . 7 (suc 𝐵 = (𝐵 ∪ {𝐵}) → 𝑥 ∈ suc 𝐵((𝐴 ·o 𝑥) +o 𝐴) = 𝑥 ∈ (𝐵 ∪ {𝐵})((𝐴 ·o 𝑥) +o 𝐴))
31, 2ax-mp 5 . . . . . 6 𝑥 ∈ suc 𝐵((𝐴 ·o 𝑥) +o 𝐴) = 𝑥 ∈ (𝐵 ∪ {𝐵})((𝐴 ·o 𝑥) +o 𝐴)
4 iunxun 3945 . . . . . 6 𝑥 ∈ (𝐵 ∪ {𝐵})((𝐴 ·o 𝑥) +o 𝐴) = ( 𝑥𝐵 ((𝐴 ·o 𝑥) +o 𝐴) ∪ 𝑥 ∈ {𝐵} ((𝐴 ·o 𝑥) +o 𝐴))
53, 4eqtri 2186 . . . . 5 𝑥 ∈ suc 𝐵((𝐴 ·o 𝑥) +o 𝐴) = ( 𝑥𝐵 ((𝐴 ·o 𝑥) +o 𝐴) ∪ 𝑥 ∈ {𝐵} ((𝐴 ·o 𝑥) +o 𝐴))
6 oveq2 5850 . . . . . . . 8 (𝑥 = 𝐵 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝐵))
76oveq1d 5857 . . . . . . 7 (𝑥 = 𝐵 → ((𝐴 ·o 𝑥) +o 𝐴) = ((𝐴 ·o 𝐵) +o 𝐴))
87iunxsng 3941 . . . . . 6 (𝐵 ∈ On → 𝑥 ∈ {𝐵} ((𝐴 ·o 𝑥) +o 𝐴) = ((𝐴 ·o 𝐵) +o 𝐴))
98uneq2d 3276 . . . . 5 (𝐵 ∈ On → ( 𝑥𝐵 ((𝐴 ·o 𝑥) +o 𝐴) ∪ 𝑥 ∈ {𝐵} ((𝐴 ·o 𝑥) +o 𝐴)) = ( 𝑥𝐵 ((𝐴 ·o 𝑥) +o 𝐴) ∪ ((𝐴 ·o 𝐵) +o 𝐴)))
105, 9syl5eq 2211 . . . 4 (𝐵 ∈ On → 𝑥 ∈ suc 𝐵((𝐴 ·o 𝑥) +o 𝐴) = ( 𝑥𝐵 ((𝐴 ·o 𝑥) +o 𝐴) ∪ ((𝐴 ·o 𝐵) +o 𝐴)))
1110adantl 275 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝑥 ∈ suc 𝐵((𝐴 ·o 𝑥) +o 𝐴) = ( 𝑥𝐵 ((𝐴 ·o 𝑥) +o 𝐴) ∪ ((𝐴 ·o 𝐵) +o 𝐴)))
12 suceloni 4478 . . . 4 (𝐵 ∈ On → suc 𝐵 ∈ On)
13 omv2 6433 . . . 4 ((𝐴 ∈ On ∧ suc 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = 𝑥 ∈ suc 𝐵((𝐴 ·o 𝑥) +o 𝐴))
1412, 13sylan2 284 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = 𝑥 ∈ suc 𝐵((𝐴 ·o 𝑥) +o 𝐴))
15 omv2 6433 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = 𝑥𝐵 ((𝐴 ·o 𝑥) +o 𝐴))
1615uneq1d 3275 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) ∪ ((𝐴 ·o 𝐵) +o 𝐴)) = ( 𝑥𝐵 ((𝐴 ·o 𝑥) +o 𝐴) ∪ ((𝐴 ·o 𝐵) +o 𝐴)))
1711, 14, 163eqtr4d 2208 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) ∪ ((𝐴 ·o 𝐵) +o 𝐴)))
18 omcl 6429 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On)
19 simpl 108 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ∈ On)
20 oaword1 6439 . . . 4 (((𝐴 ·o 𝐵) ∈ On ∧ 𝐴 ∈ On) → (𝐴 ·o 𝐵) ⊆ ((𝐴 ·o 𝐵) +o 𝐴))
21 ssequn1 3292 . . . 4 ((𝐴 ·o 𝐵) ⊆ ((𝐴 ·o 𝐵) +o 𝐴) ↔ ((𝐴 ·o 𝐵) ∪ ((𝐴 ·o 𝐵) +o 𝐴)) = ((𝐴 ·o 𝐵) +o 𝐴))
2220, 21sylib 121 . . 3 (((𝐴 ·o 𝐵) ∈ On ∧ 𝐴 ∈ On) → ((𝐴 ·o 𝐵) ∪ ((𝐴 ·o 𝐵) +o 𝐴)) = ((𝐴 ·o 𝐵) +o 𝐴))
2318, 19, 22syl2anc 409 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) ∪ ((𝐴 ·o 𝐵) +o 𝐴)) = ((𝐴 ·o 𝐵) +o 𝐴))
2417, 23eqtrd 2198 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) +o 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  cun 3114  wss 3116  {csn 3576   ciun 3866  Oncon0 4341  suc csuc 4343  (class class class)co 5842   +o coa 6381   ·o comu 6382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-oadd 6388  df-omul 6389
This theorem is referenced by:  onmsuc  6441
  Copyright terms: Public domain W3C validator