ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnsplit GIF version

Theorem nnsplit 10329
Description: Express the set of positive integers as the disjoint union of the first 𝑁 values and the rest. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Assertion
Ref Expression
nnsplit (𝑁 ∈ ℕ → ℕ = ((1...𝑁) ∪ (ℤ‘(𝑁 + 1))))

Proof of Theorem nnsplit
StepHypRef Expression
1 nnuz 9754 . . 3 ℕ = (ℤ‘1)
21a1i 9 . 2 (𝑁 ∈ ℕ → ℕ = (ℤ‘1))
3 peano2nn 9118 . . . 4 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
43, 1eleqtrdi 2322 . . 3 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ (ℤ‘1))
5 uzsplit 10284 . . 3 ((𝑁 + 1) ∈ (ℤ‘1) → (ℤ‘1) = ((1...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))))
64, 5syl 14 . 2 (𝑁 ∈ ℕ → (ℤ‘1) = ((1...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))))
7 nncn 9114 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
8 1cnd 8158 . . . . 5 (𝑁 ∈ ℕ → 1 ∈ ℂ)
97, 8pncand 8454 . . . 4 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = 𝑁)
109oveq2d 6016 . . 3 (𝑁 ∈ ℕ → (1...((𝑁 + 1) − 1)) = (1...𝑁))
1110uneq1d 3357 . 2 (𝑁 ∈ ℕ → ((1...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))) = ((1...𝑁) ∪ (ℤ‘(𝑁 + 1))))
122, 6, 113eqtrd 2266 1 (𝑁 ∈ ℕ → ℕ = ((1...𝑁) ∪ (ℤ‘(𝑁 + 1))))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  cun 3195  cfv 5317  (class class class)co 6000  1c1 7996   + caddc 7998  cmin 8313  cn 9106  cuz 9718  ...cfz 10200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201
This theorem is referenced by:  summodclem3  11886
  Copyright terms: Public domain W3C validator